The Overture Grid Classes
Reference Guide, Version 1.0

Geoffrey S. Chesshire

Scientific Computing Group (CIC-19)
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

William D. Henshaw

Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA, 94551
henshaw@lInl.gov
http://www.lInl.gov/casc/people/henshaw
http://www.lInl.gov/casc/Overture August 7, 2002 UCRL-MA-134448

Abstract

Overture is a library containing classes for grids, overlapping grid generation and the discretization and solution of PDEs on
overlapping grids. This document describes the Overture grid classes, including classes for single grids and classes for collec-
tions of grids. The primary classes described are the MappedGrid, GridCollection and CompositeGrid classes. These classes
hold the geometry arrays required by PDE solvers such as the vertex (grid vertices), vertexDerivative (jacobian derivatives),
and vertexBoundaryNormal (normals on the boundary), etc. The geometry arrays can be optionally generated as required by
the application. The grid classes have support for multigrid levels and for adaptive mesh refinement.

CONTENTS 1

Contents

1 Introduction 10
2 Class GenericGrid 10
2.1 Publicmember functions 10
211 GenericGrid() 10
2.1.2 GenericGrid(const GenericGrid& x, const CopyTypect=DEEP) 10
2.1.3 virtual ~GenericGrid() 10
2.1.4 GenericGrid& operator=(const GenericGrid& X) e 10
2.1.5 void reference(const GenericGrid& X) e 10
2.1.6 virtual void breakReference() 10
2.1.7 virtual void consistencyCheck() const 10
2.1.8 virtual Integer get(const GenericDataBase& dir, const aString&name) 10
2.1.9 virtual Integer put(GenericDataBase& dir, const aString& name) const 11

2.1.10 Integer update(const Integer what = THEusualSuspects,
const Integer how = COMPUTEtheUsual) 11

2.1.11 virtual Integer update(GenericGrid& x, const Integer what = THEusualSuspects, const Integer
how = COMPUTEtheUsual) e 11
2.1.12 virtual void destroy(const Integer what = NOTHING) 11
2.1.13 void geometryHasChanged(const Integer what = ~NOTHING) 11
2.1.14 Logical operator==(const GenericGrid& x) const 11
2.1.15 Logical operator!=(const GenericGrid& X) const 11
2.2 Public Member functions foraccesstodata 11
2.2.1 const Integer& computedGeometry() const 11
2.2.2 virtual aString getClassName() const 11
2.2.3 GenericGridDatax operator—=>() 12
2.24 GenericGridData& operator=() 12
2.3 Public member functions called only from derived classes 12
2.3.1 void reference(GenericGridData& X) e 12
2.3.2 void updateReferences(const Integer what = EVERYTHING) 12
2.4 Public dataused only by derived classes 12
241 GenericGridDatax rcData 12
242 LogicalisCounted 12
25 Publicconstants 12
251 NOTHING 12
2.5.2 THEUSUAISUSPECES o e e 12
253 EVERYTHING 12
254 COMPUTERNOLhING o e e e e e 13
255 COMPUTEtheUsual 13
25.6 COMPUTEfailed 13
3 Class MappedGrid 13
3.1 Publicmember functions 13
3.1.1 MappedGrid(const Integer numberOfDimensions_=0) 13
3.1.2 MappedGrid(const MappedGrid& x, const CopyType ct=DEEP) 13
3.1.3 MappedGrid(Mapping& mapping_)« v o i e e 13
3.1.4 MappedGrid(MappingRC& mapping-) o o 13
3.15 virtual ~MappedGrid() 13
3.1.6 MappedGrid& operator=(const MappedGrid& x) 13
3.1.7 void reference(const MappedGrid& X) 13
3.1.8 wvoid reference(Mapping& X) o o oo 14
3.1.9 voidreference(MappingRC& X) o o i i e 14
3.1.10 virtual void breakReference() 14
3.1.11 void changeToAllVertexCentered()« . . . e 14
3.1.12 void changeToAllCellCentered() o o 14

3.1.13 virtual void consistencyCheck() const 14

CONTENTS

3.2

2
3.1.14 virtual Integer get(const GenericDataBase& dir, const aString&name) 14
3.1.15 virtual Integer put(GenericDataBase& dir, const aString& name)const 14
3.1.16 Integer update(const Integer what = THEusualSuspects,
const Integer how = COMPUTEtheUsual) 14
3.1.17 Integer update(MappedGrid& x, const Integer what = THEusualSuspects, const Integer how = COM-
PUTEtheUsual) e 15
3.1.18 void destroy(const Integer what = NOTHING), 15
3.1.19 void getlnverseCondition(MappedGrid& g2, const RealArray& xrl, const Real Array& rx2, const Re-
alArray& condition) L 15
3.1.20 void specifyProcesses(const Range& range) e 15
3.1.21 virtual void initialize(const Integer& numberOfDimensions.) 15
Public Member functions foraccesstodata 15
3.2.1 const Integer& numberOfDimensions() const 15
3.2.2 const IntegerArray& dimension() const 16
3.2.3 const IntegerArray& indexRange() const 16
3.2.4 const IntegerArray& extendedIndexRange()const. o 16
3.2.5 const IntegerArray& gridindexRange() const 16
3.2.6 void setGridIndexRange(const Integer& ks, const Integer& kd, const Integer& gridindexRange). . . . 16
3.2.7 const IntegerArray& numberOfGhostPoints() const o 16
3.2.8 void setNumberOfGhostPoints(const Integer& ks, const Integer& kd, const Integer& numberOfGhost-
POINES)) . . . 17
3.2.9 const Logical& useGhostPoints() const 17
3.2.10 void setUseGhostPoints(const Logical& useGhostPoints)) 17
3.2.11 const IntegerArray& discretizationWidth()consto 17
3.2.12 void setDiscretizationWidth(const Integer& kd, const Integer& discretizationWidth) 17
3.2.13 const IntegerArray& boundaryDiscretizationWidth() consto L. 17
3.2.14 void setBoundaryDiscretizationWidth(const Integer& ks, const Integer& kd, const Integer& boundary-
DiscretizationWidth.) e 17
3.2.15 const IntegerArray& boundaryCondition() 17
3.2.16 void setBoundaryCondition(const Integer& ks, const Integer& kd, const Integer& boundaryCondition) 18
3.2.17 const IntegerArray& sharedBoundaryFlag()const o oo 18
3.2.18 void setSharedBoundaryFlag(const Integer& ks, const Integer& kd, const Integer& sharedBoundaryFlag_) 18
3.2.19 const RealArray& sharedBoundaryTolerance() const 18
3.2.20 void setSharedBoundaryTolerance(const Integer& ks, const Integer& kd, const Real& sharedBound-
aryToleranCe.) 18
3.2.21 const RealArray& gridSpacing() Const 18
3.2.22 const LogicalArray& isCellCentered() const. 18
3.2.23 void setlsCellCentered(const Integer& kd, const Logical& isCellCentered.) 19
3.2.24 const Logical& isAllCellCentered() const 19
3.2.25 const Logical& isAllVertexCentered()const 19
3.2.26 const IntegerArray& isPeriodic() const 19
3.2.27 void setlsPeriodic(const Integer& kd, const Mapping::periodicType& isPeriodic) 19
3.2.28 const RealArray& minimumEdgeLength(yconst 19
3.2.29 const RealArray& maximumEdgeLength()const 19
3.2.30 const RealArray& boundingBox() const 20
3.2.31 const Integerx 11() const; const Integerx 12() const; const Integer= I3()const 20
3.2.32 IntegerMappedGridFunction& mask() 20
3.2.33 RealMappedGridFunction& vertex() e 20
3.2.34 RealMappedGridFunction& center() 20
3.2.35 RealMappedGridFunction& corner(). e e e e 21
3.2.36 RealMappedGridFunction& vertexDerivative() 21
3.2.37 RealMappedGridFunction& centerDerivative() 21
3.2.38 RealMappedGridFunction& inverseVertexDerivative() o L 21
3.2.39 RealMappedGridFunction& inverseCenterDerivative() 22
3.2.40 RealMappedGridFunction& vertexJacobian() 22
3.2.41 RealMappedGridFunction& centerJacobian() 22
3.2.42 RealMappedGridFunction& cellMolume() 22

CONTENTS 3

3.3

3.4

3.5

3.6

3.2.43 RealMappedGridFunction& faceNormal() 23
3.2.44 RealMappedGridFunction& centerNormal() L 23
3.2.45 RealMappedGridFunction& faceArea() 24
3.2.46 RealMappedGridFunction& centerArea() 24
3.2.47 RealMappedGridFunction& vertexBoundaryNormal(const Integer& k, const Integer&) 24
3.2.48 RealMappedGridFunction& centerBoundaryNormal(const Integer& k, const Integer& 1) 25
3.2.49 RealMappedGridFunction& centerBoundaryTangent(const Integer& k, const Integer& 1) 25
3.250 MappingRC& mMapping() . .« « « « v o o 26
3.251 constBox& box() const 26
3.2.52 virtual aString getClassName() const e 26
3.2.53 MappedGridDatax operator—>>()o e 26
3.2.54 MappedGridData& operator=() e e 26
Public member functions called only from derived classes 26
3.3.1 void reference(MappedGridData& X) e 26
3.3.2 void updateReferences(const Integer what = EVERYTHING) 27
3.3.3 void setNumberOfDimensions(const Integer& numberOfDimensions.)) 27
Publicdata e 27
3.4.1 AMR_ParentChildSiblingInfox parentChildSiblinginfo 27
Public data used only by derived classes e 27
3.5.1 MappedGridDatax rcData 27
3.5.2 Logical isCounted 27
Publicconstants 27
3.6.1 THEMaSK o 27
3.6.2 THEVErteX e 27
3.6.3 THECeNter 27
3.6.4 THECOMNEr 27
3.6.5 THEvertexDerivative 27
3.6.6 THEcenterDerivative 27
3.6.7 THEinverseVertexDerivative e e 28
3.6.8 THEinverseCenterDerivative 28
3.6.9 THEvertexJacobian L 28
3.6.10 THEcenterJacobian L 28
3.6.11 THEcellVolume 28
3.6.12 THEfaceNormal 28
3.6.13 THEcenterNormal 28
3.6.14 THEfaceArea 28
3.6.15 THECENtErArea o o o 28
3.6.16 THEvertexBoundaryNormal e 28
3.6.17 THEcenterBoundaryNormal e 28
3.6.18 THEcenterBoundaryTangent 29
3.6.19 THEminMaxEdgeLength 29
3.6.20 THEboundingBOX 29
3.6.21 THEUSUAISUSPECES o e e 29
3.6.22 EVERYTHING o 29
3.6.23 USEdifferenceApproximation 29
3.6.24 COMPUTEQEOMELIY o o o e e e e e e e e e e 29
3.6.25 COMPUTEgeometryAsNeeded 29
3.6.26 COMPUTEtheUsual e 29
3.6.27 ISdiscretizationPoint L e 30
3.6.28 ISinterpolationPoint 30
3.6.29 ISghostPoint 30
3.6.30 ISinteriorBoundaryPoint 30
3.6.31 USESbackupRules 30
3.6.32 IShiddenByRefinement L e 30
3.6.33 ISreservedBit0 30
3.6.34 ISreservedBitl 30

3.6.35 ISreservedBit2 e 30

CONTENTS 4
3.6.36 GRIDNUMDErBILS 30
3.6.37 ISusedPoint 30

4 Class GenericGridCollection 30

4.1 Publicmember functions L 31
4.1.1 GenericGridCollection(const Integer numberOfGrids_=0) 31
4.1.2 GenericGridCollection(const GenericGridCollection& X, const CopyType ct=DEEP) 31
4.1.3 virtual ~GenericGridCollection() 31
4.1.4 GenericGridCollection& operator=(const GenericGridCollection& x) 31
4.1.5 void reference(const GenericGridCollection& x) 31
4.1.6 virtual void breakReference() L 31
4.1.7 virtual void consistencyCheck() const L 31
4.1.8 virtual Integer get(const GenericDataBase& dir, const aString& name) 31
4.1.9 virtual Integer put(GenericDataBase& dir, const aString& name) const 31
4.1.10 Integer update(const Integer what = THEusualSuspects,

const Integer how = COMPUTEtheUsual) 31
4.1.11 virtual Integer update(GenericGridCollection& X, const Integer what = THEusualSuspects, const Inte-

gerhow = COMPUTEtheUsual) e 32
4.1.12 void destroy(const Integer what = NOTHING), 32
4.1.13 void geometryHasChanged(const Integer what = ~NOTHING) 32
4.1.14 virtual Integer addRefinement(const Integer& level, const Integerk=0) 32
4.1.15 virtual void deleteRefinement(const Integer& k) L 32
4.1.16 virtual void deleteRefinementLevels(const Integer level =0) 32
4.1.17 virtual void referenceRefinementLevels(GenericGridCollection& x, Integer level = INTEGER_MAX) . 32
4.1.18 virtual Integer addMultigridCoarsening(const Integer& level, const Integerk=0) 33
4.1.19 virtual void deleteMultigridCoarsening(const Integer& k) 33
4.1.20 virtual void deleteMultigridLevels(const Integer level =0) 33
4.1.21 virtual void initialize(const Integer& numberOfGrids_) 33
4.1.22 Logical operator==(const GenericGridCollection& x)const 33
4.1.23 Logical operator!=(const GenericGridCollection& x)const, 33
4.1.24 Integer getindex(const GenericGrid& x) const 33

4.2 Public Member functions foraccesstodata 33
4.2.1 const Integer& computedGeometry() CONSt L 33
4.2.2 const Integer& numberOfGrids() const L 33
4.2.3 const Integer& numberOfBaseGrids() const 33
4.2.4 const Integer& numberOfRefinementLevels()const 33
4.2.5 const Integer& numberOfComponentGrids() const 33
4.2.6 const Integer& numberOfMultigridLevels()const o 33
4.2.7 GenericGrid& operator[J(constint& i) 34
4.2.8 virtual aString getClassName() const e 34
4.2.9 GenericGridCollectionDatax operator—>() 34
4.2.10 GenericGridCollectionData& operator«() e 34

4.3 Public member functions called only from derived classes 34
4.3.1 void reference(GenericGridCollectionData& X) 34
4.3.2 void updateReferences(const Integer what = EVERYTHING) 34
4.3.3 virtual void setNumberOfGrids(const Integer& numberOfGrids) 34

4.4 Publicdata 34
441 ListOfGenericGrid grid 34
4.4.2 constIntegerArray gridNumber L 34
443 ListOfGenericGridCollection baseGrid L 34
4.4.4 const IntegerArray baseGridNumber 34
445 ListOfGenericGridCollection refinementLevelo 35
4.4.6 const IntegerArray refinementLevelNumber 35
447 ListOfGenericGridCollection componentGrid 35
4.4.8 const IntegerArray componentGridNumber L 35
4.4.9 ListOfGenericGridCollection multigridLevel 35
4.4.10 const IntegerArray multigridLevelNumber o 35

CONTENTS 5

4,5 Publicdatausedonly by derived classes 35
45.1 GenericGridCollectionDatax rcData o e 35
452 Logical isCounted 35

4.6 Publicconstants L 35
46.1 THEDaSeGrid e 35
4.6.2 THErefinementLevel 35
4.6.3 THEcomponentGrid e 35
46.4 THEmultigridLevel 36
4.6.5 NOTHING e 36
4.6.6 THEUSUAISUSPECES 36
4.6.7 THENSIS . . . e 36
46.8 EVERYTHING e 36
46.9 COMPUTENOthing o e e 36
4.6.10 COMPUTEtheUsual 36
4.6.11 COMPUTEfailed e e 36

5 Class GridCollection 36

5.1 Publicmember functions 36

5.1.1 GridCollection(const Integer numberOfDimensions_ = 0,

const Integer numberOfGrids_=0) 36
5.1.2 GridCollection(const GridCollection& x, const CopyType ct=DEEP) 37
5.1.3 virtual ~GridCollection() 37
5.1.4 GridCollection& operator=(const GridCollection& x) 37
5.1.5 void reference(const GridCollection& X) 37
5.1.6 virtual void breakReference() 37
5.1.7 void changeToAllVertexCentered() i i i i e e e 37
5.1.8 void changeToAllCellCentered() e 37
5.1.9 virtual void consistencyCheck() const 37
5.1.10 virtual Integer get(const GenericDataBase& dir, const aString&name) 37
5.1.11 virtual Integer put(GenericDataBase& dir, const aString& name)const 37
5.1.12 Integer update(const Integer what = THEusualSuspects,

const Integer how = COMPUTEtheUsual) 37
5.1.13 Integer update(GridCollection& x, const Integer what = THEusualSuspects, const Integer how = COM-

PUTEtheUsual) 38
5.1.14 virtual void destroy(const Integer what = NOTHING) 38
5.1.15 virtual Integer addRefinement(const IntegerArray& range, const IntegerArray& factor) const Inte-

ger& level, const Integer K=0) 38
5.1.16 Integer addRefinement(const IntegerArray& range, const Integer& factor) const Integer& level, const

Integer K=0) 38
5.1.17 virtual void deleteRefinement(const Integer& k) oL L 38
5.1.18 virtual void deleteRefinementLevels(const Integer& level) 38
5.1.19 void referenceRefinementLevels(GridCollection& X, Integer level = INTEGER_.MAX) 38
5.1.20 virtual Integer addMultigridCoarsening(const IntegerArray& factor, const Integer& level, const Integer

K=0) . e 38
5.1.21 Integer addMultigridCoarsening(const Integer& factor, const Integer& level, const Integerk=0) 39
5.1.22 virtual void deleteMultigridCoarsening(const Integer& k) 39
5.1.23 virtual void deleteMultigridLevels(const Integer level =0) 39
5.1.24 virtual void initialize(const Integer& numberOfDimensions_, Integer& numberOfGrids_) 39

5.2 Public Member functions foraccesstodata 39
5.2.1 const Integer& numberOfDimensions() const 39
5.2.2 virtual aString getClassName() const e 39
5.2.3 MappedGrid& operator[J(const int& i) const 39
5.2.4 GridCollectionDatax operator—=>>() 39
525 GridCollectionData& operator() 39

5.3 Public member functions called only from derived classes 39
5.3.1 void reference(GridCollectionData& X) L 39

5.3.2 void updateReferences(const Integer what = EVERYTHING) 39

CONTENTS

54

55

5.6

6
5.3.3 virtual void setNumberOfGrids(const Integer& numberOfGrids.) 39
5.3.4 virtual void setNumberOfDimensions(const Integer& numberOfDimensions.) 40
5.3.5 virtual void setNumberOfDimensionsAndGrids(const Integer& numberOfDimensios_, const Inte-
ger& numberOfGrids.) 40
Publicdata 40
5.4.1 constRealArray boundingBox 40
5.4.2 const IntegerArray refinementFactor 40
5.4.3 const IntegerArray multigridCoarseningFactor 40
5.4.4 ListOfMappedGrid grid 40
5.4.5 ListOfGridCollection baseGrid e 40
5.4.6 ListOfGridCollection refinementLevel 40
5.4.7 ListOfGridCollection componentGrid e 40
5.4.8 ListOfGridCollection multigridLevel 41
5.4.9 AMR_RefinementLevellnfox refinementLevellnfo 41
Public data used only by derived classes L 41
55.1 GridCollectionDatax rcData e 41
5.5.2 Logical isCounted 41
Publicconstants 41
56.1 THEMasSK 41
5.6.2 THEVerteX e 41
5.6.3 THECENEr e 41
5.6.4 THECOINEr 41
5.6.5 THEvertexDerivative 41
5.6.6 THEcenterDerivative 41
5.6.7 THEinverseVertexDerivative e 41
5.6.8 THEinverseCenterDerivative e 42
5.6.9 THEvertexJacobian L 42
5.6.10 THEcenterJacobian 42
5.6.11 THEcellVolume 42
5.6.12 THEfaceNormal 42
5.6.13 THEcenterNormal e 42
5.6.14 THEfaceArea 42
5.6.15 THECENErArea o o 42
5.6.16 THEvertexBoundaryNormal 42
5.6.17 THEcenterBoundaryNormal 42
5.6.18 THEcenterBoundaryTangent 42
5.6.19 THEminMaxEdgeLength e 42
5.6.20 THEboundingBox e 42
5.6.21 THEUSUAISUSPECTS o 42
5.6.22 EVERYTHING e 43
5.6.23 USEdifferenceApproximation 43
5.6.24 COMPUTEQROMELIY o e e e e 43
5.6.25 COMPUTEgeometryAsNeeded e e 43
5.6.26 COMPUTEtheUsual e 43
5.6.27 ISdiscretizationPoint L 43
5.6.28 ISinterpolationPoint 43
5.6.29 ISghostPoint L 43
5.6.30 ISinteriorBoundaryPoint L 43
5.6.31 USESbhackupRules e 43
5.6.32 IShiddenByRefinement 43
5.6.33 ISreservedBit0 43
5.6.34 ISreservedBitl 43
5.6.35 ISreservedBit2 44
5.6.36 GRIDNuUmMberBits 44
5.6.37 ISusedPoint 44

CONTENTS 7
6 Class CompositeGrid 44
6.1 Public member functions 44
6.1.1 CompositeGrid(const Integer numberOfDimensions_ = 0,
const Integer numberOfComponentGrids_=0) 44
6.1.2 CompositeGrid(const CompositeGrid& x, const CopyTypect=DEEP) 44
6.1.3 virtual ~CompositeGrid() 44
6.1.4 CompositeGrid& operator=(const CompositeGrid& X) o e 44
6.1.5 void reference(const CompositeGrid& X) 44
6.1.6 virtual void breakReference() 44
6.1.7 void changeToAllVertexCentered() 44
6.1.8 void changeToAllCellCentered() e 44
6.1.9 virtual void consistencyCheck() const 44
6.1.10 virtual Integer get(const GenericDataBase& dir, const aString&name) 45
6.1.11 virtual Integer put(GenericDataBase& dir, const aString& name)const 45
6.1.12 Integer update(const Integer what = THEusualSuspects,
const Integer how = COMPUTEtheUsual) 45
6.1.13 Integer update(CompositeGrid& x, const Integer what = THEusualSuspects, const Integer how = COM-
PUTEtheUsual) 45
6.1.14 virtual void destroy(const Integer what = NOTHING) 45
6.1.15 virtual Integer addRefinement(const IntegerArray& range, const IntegerArray& factor, const Inte-
ger& level, const Integer K =0) 45
6.1.16 Integer addRefinement(const IntegerArray& range, const Integer& factor, const Integer& level, const
Integer K=0) o e 46
6.1.17 virtual void deleteRefinement(const Integer& k) Lo 46
6.1.18 virtual void deleteRefinementLevels(const Integer& level), 46
6.1.19 void referenceRefinementLevels(CompositeGrid& X, Integer level = INTEGER_MAX) 46
6.1.20 virtual Integer addMultigridCoarsening(const IntegerArray& factor, const Integer& level, const Integer
K=0) . . e 46
6.1.21 Integer addMultigridCoarsening(const Integer& factor, const Integer& level, const Integerk=0) 46
6.1.22 void makeCompleteMultigridLevels() 46
6.1.23 virtual void deleteMultigridCoarsening(const Integer& k) L. 46
6.1.24 virtual void deleteMultigridLevels(const Integer level =0) 46
6.1.25 void getInterpolationStencil(const Integer& ki1, const IntegerAr-
ray& k2, const Real Array& r, IntegerArray& interpolationStencil,
const LogicalArray& useBackupRules) 46
6.2 Public Member functions foraccesstodata 47
6.2.1 Integer& numberOfCompleteMultigridLevels() 47
6.2.2 Real&epsilon() e e 47
6.2.3 Logical& interpolationIsAllExplicit) 47
6.2.4 Logical& interpolationIsAlllmplicit() 47
6.2.5 virtual aString getClassName() const 47
6.2.6 CompositeGridDatax operator—>() 47
6.2.7 CompositeGridData& operator«() e e 47
6.3 Public member functions called only from derivedclasses, 47
6.3.1 void reference(CompositeGridData& X) e e 47
6.3.2 void updateReferences(const Integer what = EVERYTHING) 48
6.3.3 virtual void setNumberOfGrids(const Integer& numberOfGrids.) 48
6.3.4 virtual void setNumberOfDimensions(const Integer& numberOfDimensions.) 48
6.3.5 virtual void setNumberOfDimensionsAndGrids(const Integer& numberOfDimensios_, const Inte-
ger& numberOfGrids.) 48
6.4 Publicdata 48
6.4.1 IntegerArray numberOfinterpolationPoints 48
6.4.2 IntegerArray numberOfinterpoleePoints L 48
6.4.3 LogicalArray interpolationlsimplicit 48
6.4.4 LogicalArray backuplnterpolationlsimplicit 48
6.4.5 IntegerArray interpolationWidth L 48
6.4.6 IntegerArray backuplnterpolationWidth L 49

CONTENTS 8

6.4.7 RealArray interpolationOverlap 49

6.4.8 RealArray backuplnterpolationOverlap 49

6.4.9 RealArray interpolationConditionLimit L 49
6.4.10 RealArray backuplnterpolationConditionLimit L. 49
6.4.11 LogicalArray interpolationPreference L 49
6.4.12 LogicalArray maylinterpolate 49
6.4.13 LogicalArray mayBackuplnterpolate 49
6.4.14 LogicalArray mayCutHoles 49
6.4.15 LogicalArray multigridCoarseningRatio 50
6.4.16 LogicalArray multigridProlongationWidth 50
6.4.17 LogicalArray multigridRestrictionWidth 50
6.4.18 ListOfRealArray interpolationCoordinates e 50
6.4.19 ListOfIntegerArray interpoleeGrid L 50
6.4.20 IntegerArray interpoleeGridRange L 50
6.4.21 ListOfintegerArray interpoleePoint L 50
6.4.22 ListOfIntegerArray interpoleeLocation 51
6.4.23 ListOfIntegerArray interpolationPoint 51
6.4.24 ListOfRealArray interpolationCondition 51
6.4.25 ListOfCompositeGrid multigridLevel 51

6.5 Public data used by the Grid Generator Ogen 51
6.5.1 RealCompositeGridFunction inverseCondition 51
6.5.2 RealCompositeGridFunction inverseCoordinates e 51
6.5.3 IntegerCompositeGridFunction inverseGrid 51

6.6 Public dataused only by derived classes 51
6.6.1 CompositeGridDataxrcData 51
6.6.2 Logical isCounted 52

6.7 Publicconstants 52
6.7.1 THEinterpolationCoordinates i e e 52
6.7.2 THEinterpoleeGrid 52
6.7.3 THEinterpoleeLocation 52
6.7.4 THEinterpolationPoint 52
6.7.5 THEinterpolationCondition 52
6.7.6 THEINVerseMap 52
6.7.7 THEUSUAISUSPECES o 52
6.7.8 EVERYTHING e 52
6.7.9 COMPUTEtheUsual e 52
6.7.10 ISgivenBylinterpoleePoint 53

A Class ReferenceCounting 53
A.1l Publicmember functions 53
A1l ReferenceCounting()« o o o 53
A.1.2 ReferenceCounting(const ReferenceCounting& x, const CopyType ct=DEEP) 53
A.1.3 virtual ~ReferenceCounting() 53
A.1.4 virtual ReferenceCounting& operator=(const ReferenceCounting&x) 53
A.15 virtual void reference(const ReferenceCounting& X) oo 53
A.1.6 virtual void breakReference() 53
A.1.7 virtual ReferenceCounting~ virtualConstructor(const CopyType ct= DEEP) const 53
A.1.8 Integer incrementReferenceCount() 53
A.1.9 Integer decrementReferenceCount() 53
A.1.10 Logical uncountedReferencesMayEXist() 53
A.1.11 virtual void consistencyCheck() const 54

A.2 Public Member functions foraccesstodata 54
A.2.1 Integer getReferenceCount() 54
A.2.2 virtual aString getClassName() const L 54

A.2.3 Integer getGloballD() const 54

CONTENTS 9
B Stream I/O 54
B.1 Stream /O Operators o 54
B.1.1 ostream& operator<(ostream& s, const ReferenceCounting& x) 54

B.1.2 ostream& operator<(ostream& s, const GenericGrid& g)o o 54

B.1.3 ostream& operator<(ostream& s, const MappedGrid&g) o 54

B.1.4 ostream& operator<(ostream& s, const GenericGridCollection&g) 54

B.1.5 ostream& operator<(ostream& s, const GridCollection& @) Lo oL 54

B.1.6 ostream& operator<(ostream& s, const CompositeGrid& g) oo 54

1 INTRODUCTION 10

1 Introduction

The Overture grid classes include classes for single grids and classes for collections of grids. The single-grid classes are related
to each other through the C++ inheritance mechanism. The base class is GenericGrid (§2), and the class MappedGrid (§3)
is derived from GenericGrid. The collections of grids are also related to each other through inheritance. The base class for
collections of grids is GenericGridCollection (§4), which contains a list of GenericGrids. The class GridCollection (§5)
is derived from GenericGridCollection, and contains a list of MappedGrids. All other Overture grid classes that contain
collections of MappedGrids are derived from GridCollection. In particular, the class CompositeGrid (§6) is derived from
GridCollection. All of these classes are described in this document.

All of the Overture grid classes are reference-counted, using the envelope-letter paradigm. To support this, the base grid
classes GenericGrid and GenericGridCollection are derived from the base class ReferenceCounting (Appendix A).

2 ClassGenericGrid

Note: You should not need to read this section unless you are designing a derived grid class.

Class GenericGrid is the base class for all of the Overture single-grid classes. By itself it does not contain any geometric
data. It is useful only as a base class for other grid classes that may contain data to describe particular kinds of grids. We
envision deriving from GenericGrid separate classes for structured and unstructured grids, and perhaps for other kinds of grids
that we have not anticipated. For example, the class MappedGrid (§3) is derived from GenericGrid in order to describe
curvilinear structured grids.

Many of the public constants, member data and member functions of class GenericGrid are overloaded in the derived
classes. They are defined here in the base class for single grids because they are common to all single grid classes. The ordinary
user (programmer) need not be concerned with these constants, data and member functions, or with the class GenericGrid at
all, except where they are explicitly referred to in the descriptions of derived grid classes such as MappedGrid (§3).

2.1 Public member functions
2.1.1 GenericGrid()

Default constructor.

2.1.2 GenericGrid(const GenericGrid& x, const CopyType ct = DEEP)
Copy constructor. This does a deep copy by default. See also operator=(x) (§2.1.4) and reference(x) (§2.1.5).

2.1.3 virtual ~GenericGrid()

Destructor.

2.1.4 GenericGrid& operator=(const GenericGrid& x)

Assignment operator. This is also called a deep copy.

2.1.5 void reference(const GenericGrid& x)

Make a reference. This is also called a shallow copy. This GenericGrid shares the data of x.

2.1.6 virtual void breakReference()

Break a reference. If this GenericGrid shares data with any other GenericGrid, then this function replaces it with a new copy
that does not share data.

2.1.7 virtual void consistencyCheck() const

Check the consistency of this GenericGrid.

2.1.8 virtual Integer get(const GenericDataBase& dir, const aString& name)

Copy a GenericGrid from a file.

2 CLASSGENERICGRID 11

2.1.9 virtual Integer put(GenericDataBase& dir, const aString& name) const

Copy a GenericGrid into a file.

2.1.10 Integer update(const Integer what = THEusualSuspects,
const Integer how = COMPUTEtheUsual)

Update geometric data. The first argument (what) indicates which geometric data are to be updated. Any combination of the
constants NOTHING (§2.5.1), THEusualSuspects (§2.5.2) and EVERYTHING (§2.5.3) may be bitwise ORed together to
form the first argument of update(), to indicate which geometric data should be updated. This function returns a value obtained
by bitwise ORing some of these constants, to indicate for which of the optional geometric data new array space was allocated. In
addition, the constant COMPUTEfailed (§2.5.6), may be bitwise ORed into the value returned by update() in order to indicate
that the computation of some geometric data failed. The second argument (how) indicates whether and how any computation
of geometric data should be done. Any combination of the constants COMPUTEnNothing (§2.5.4) and COMPUTEtheUsual
(§2.5.5) may be bitwise ORed together to form the optional second argument of update(). In fact, a GenericGrid contains no
geometric data, so all this is irrelevant.

2.1.11 virtual Integer update(GenericGrid& x, const Integer what = THEusualSuspects, const Integer how = COM-
PUTEtheUsual)

Update geometric data, sharing space with the optional geometric data of another GenericGrid (x). If space for any indicated
optional geometric data has not yet been allocated, or has the wrong dimensions, but x does contain the corresponding data,
then the data for this GenericGrid will share space with the corresponding data of x. Any geometric data that already exists
and has the correct dimensions is not forced to share space with the corresponding data of x. For the optional arguments what
and how, see the description of the function update(what,how) (§2.1.10).

2.1.12 virtual void destroy(const Integer what = NOTHING)

Destroy the indicated optional GenericGrid geometric data. The argument (what) indicates which optional geometric data
are to be destroyed. Any combination of the constants NOTHING (§2.5.1), THEusualSuspects (§2.5.2) and EVERYTHING
(82.5.3) may be bitwise ORed together to form the optional argument what.
2.1.13 void geometryHasChanged(const Integer what = ~NOTHING)

Mark the geometric data out-of-date. Any combination of the constants NOTHING (§2.5.1), THEusualSuspects (§2.5.2) and
EVERYTHING (§2.5.3) may be bitwise ORed together to form the first argument of geometryHasChanged(). By default,
all geometric data of this GenericGrid and all derived classes is marked out-of-date. It is recommended that this function be
called only from derived classes and grid-generation programs.

2.1.14 Logical operator==(const GenericGrid& x) const

This comparison function returns LogicalTrue (non-zero) if and only if x refers the same grid as xthis.

2.1.15 Logical operator!=(const GenericGrid& x) const

This comparison function returns LogicalTrue or (non-zero) if and only if x does not refer to the same grid as «this.

2.2 Public Member functionsfor accessto data
2.2.1 const Integer& computedGeometry() const

This function returns a reference to a bit mask that indicates which geometrical data has been computed. This mask must be
reset to zero to invalidate the data when the geometry changes. It is recommended that this data be used only by derived classes
and grid-generation programs. See also geometryHasChanged(what) (§2.1.13).

2.2.2 virtual aString getClassName() const

Get the class name of the most-derived class for this object.

2 CLASSGENERICGRID 12

2.2.3 GenericGridDatax operator—>()

Access the reference-counted data.

2.2.4 GenericGridData& operatorx()

Access the pointer to the reference-counted data.

2.3 Public member functions called only from derived classes

It is recommended that these functions be called only from derived classes.

2.3.1 void reference(GenericGridData& x)

Make a reference to an object of class GenericGridData. This GenericGrid uses x for its data. It is recommended that this
function be called only from derived classes.

2.3.2 void updateReferences(const Integer what = EVERYTHING)

Update references to the reference-counted data. It is recommended that this function be called only from derived classes.

2.4 Public data used only by derived classes

It is recommended that these variables be used only by derived classes.

2.4.1 GenericGridDatax rcData

rcData is a pointer to the reference-counted data. It is recommended that this variable be used only by derived classes. See also
the member functions operator—>() (52.2.3) and operatorx() (§2.2.4), which are provided for access to rcData.

2.4.2 Logical isCounted

isCounted is a flag that indicates whether the data pointed to by rcData (§2.4.1) is known to be reference-counted. It is
recommended that this variable be used only by derived classes.

2.5 Public constants
251 NOTHING

NOTHING =0
NOTHING indicates no geometric data. See also update(what,how) (§2.1.10) and destroy(what) (§2.1.12).

2.5.2 THEusualSuspects

THEusualSuspects = NOTHING (§2.5.1)

THEusualSuspects indicates some of the geometric data of a GenericGrid. The particular data indicated by THEusualSus-
pects may change from time to time. For this reason the use of THEusualSuspects is not recommended. In fact, a GenericGrid
contains no geometric data, so all this is moot. This constant is typically overloaded in a derived class, to indicate some of the
geometric data of that class, in addition to the geometric data indicated by the constant THEusualSuspects defined in its base
class. See also update(what,how) (§2.1.10) and destroy(what) (§2.1.12).

253 EVERYTHING

EVERYTHING = NOTHING (§2.5.1)

EVERYTHING indicates all of the geometric data associated with a GenericGrid. In fact, a GenericGrid contains no
geometric data. This constant is typically overloaded in a derived class, to indicate all of the geometric data of that class, in
addition to the geometric data indicated by the constant EVERYTHING defined in its base class. See also update(what,how)
(§2.1.10) and destroy(what) (§2.1.12).

3 CLASSMAPPEDGRID 13

2.5.4 COMPUTEnNothing

COMPUTEnNothing =0

COMPUTEnNotning indicates that no geometric data should be computed. See also update(what,how) (§2.1.10).
25,5 COMPUTEtheUsual

COMPUTEtheUsual = COMPUTERnNothing (§2.5.4)

COMPUTEtheUsual indicates that computation of geometric data should proceed in the “usual way.” In fact, a GenericGrid
contains no geometric data, so this is irrelevant. This constant is typically overloaded in a derived class, to indicate the “usual
way” of computing geometry relevant to that class, in addition to the usual way of computing the geometric data indicated by
the constant COMPUTEtheUsual defined in and relevant to its base class. See also update(what,how) (§2.1.10).

256 COMPUTEfailed

COMPUTEfailed indicates that computation of some geometric data failed. See also update(what,how) (§2.1.10).

3 ClassMappedGrid

Class MappedGrid is used for all logically-rectangular grids. This includes cartesian, rectangular and curvilinear grids. Class
MappedGrid allows for grids with holes, unused vertices or cells within a grid. It is assumed that a continuous function exists
which maps the vertices of a uniform grid to the vertices of the MappedGrid. This is no restriction, becauase it is always
possible to construct a function, for example an interpolant, with this property.

Class MappedGrid is derived from class GenericGrid (§2). It overloads some of the GenericGrid public constants,
member data and member functions.

3.1 Public member functions
3.1.1 MappedGrid(const Integer numberOfDimensions_ = 0)

Default constructor. If numberOfDimensions_.==0 (e.g., by default) then create a null MappedGrid. Otherwise, create a
MappedGrid with the given number of dimensions.

3.1.2 MappedGrid(const MappedGrid& x, const CopyType ct = DEEP)

Copy constructor. This does a deep copy by default. See also operator=(x) (§3.1.6) and reference(const MappedGrid& Xx)
(§3.1.7).

3.1.3 MappedGrid(Mapping& mapping.)

Constructor from a mapping.

3.1.4 MappedGrid(MappingRC& mapping.)

Constructor from a reference-counted mapping.

3.1.5 virtual ~MappedGrid()

Destructor.

3.1.6 MappedGrid& operator=(const MappedGrid& X)

Assignment operator. This is also called a deep copy.

3.1.7 void reference(const MappedGrid& x)

Make a reference. This is also called a shallow copy. This MappedGrid shares the data of x.

3 CLASSMAPPEDGRID 14

3.1.8 void reference(Mapping& x)

Use a given mapping.

3.1.9 void reference(MappingRC& x)

Use a given reference-counted mapping.

3.1.10 virtual void breakReference()

Break a reference. If this MappedGrid shares data with any other MappedGrid, then this function replaces it with a new copy
that does not share data.

3.1.11 void changeToAllVertexCentered()

Change the grid to be all vertex-centered.

3.1.12 void changeToAllCellCentered()

Change the grid to be all cell-centered.

3.1.13 virtual void consistencyCheck() const

Check the consistency of this MappedGrid.

3.1.14 virtual Integer get(const GenericDataBase& dir, const aString& name)

Copy a MappedGrid from a file.

3.1.15 virtual Integer put(GenericDataBase& dir, const aString& name) const

Copy a MappedGrid into afile.

3.1.16 Integer update(const Integer what
const Integer how = COMPUTEtheUsual)

THEusualSuspects,

Update geometric data. The first argument (what) indicates which geometric data are to be updated. Any combination of the
constants THEmask (§3.6.1), THEvertex (§3.6.2), THEcenter (§3.6.3), THEcorner (§3.6.4), THEvertexDerivative (§3.6.5),
THEcenterDerivative (§3.6.6), THEinverseVertexDerivative (§3.6.7), THEinverseCenterDerivative (§3.6.8), THEvertex-
Jacobian (§3.6.9), THEcenterJacobian (§3.6.10), THEcellVolume (§3.6.11), THEfaceNormal (§3.6.12), THEcenterNor-
mal (§3.6.13), THEfaceArea (§3.6.14), THEcenterArea (§3.6.15), THEvertexBoundaryNormal (§3.6.16), THEcenter-
BoundaryNormal (§3.6.17), THEcenterBoundaryTangent (§3.6.18), THEminMaxEdgeL ength (§3.6.19), THEbounding-
Box (§3.6.20), THEusualSuspects (§3.6.21) and EVERYTHING (§3.6.22), as well as any of the corresponding constants
allowed for GenericGrid::update(what,how) (§2.1.10), may be bitwise ORed together to form the first argument of update(),
to indicate which geometric data should be updated. This function returns a value obtained by bitwise ORing some of these
constants, to indicate for which of the optional geometric data new array space was allocated. In addition, the constant COM-
PUTEfailed (§2.5.6), may be bitwise ORed into the value returned by update() in order to indicate that the computation
of some geometric data failed. The second argument (how) indicates whether and how any computation of geometric data
should be done. Any combination of the constants USEdifferenceApproximation (§3.6.23), COMPUTEgeometry (§3.6.24),
COMPUTEgeometryAsNeeded (§3.6.25), COMPUTEtheUsual (§3.6.26), as well as any of the corresponding constants al-
lowed for GenericGrid::update(what,how) (§2.1.10), may be bitwise ORed together to form the optional second argument
of update(). The corresponding function update(what,how) (§2.1.10) is called with the same arguments for the base class
GenericGrid.

3 CLASSMAPPEDGRID 15

3.1.17 Integer update(MappedGrid& X, const Integer what = THEusualSuspects, const Integer how = COMPUTEth-
eUsual)

Update geometric data, sharing space with the optional geometric data of another grid (x). If space for any indicated optional
geometric data has not yet been allocated, or has the wrong dimensions, but x does contain the corresponding data, then
the data for this MappedGrid will share space with the corresponding data of x. Any geometric data that already exists
and has the correct dimensions is not forced to share space with the corresponding data of x. The corresponding function
update(x,what,how) (§2.1.11) is called with the same arguments for the base class GenericGrid. For the optional arguments
what and how, see the description of the function update(what,how) (§3.1.16).

3.1.18 wvoid destroy(const Integer what = NOTHING)

Destroy the indicated optional geometric grid data. The argument (what) indicates which optional geometric data are to be de-
stroyed. Any combination of the constants THEmask (§3.6.1), THEvertex (§3.6.2), THEcenter (§3.6.3), THEcorner (§3.6.4),
THEvertexDerivative (§3.6.5), THEcenterDerivative (§3.6.6), THEinverseVertexDerivative (§3.6.7), THEinverseCenter-
Derivative (§3.6.8), THEvertexJacobian (§3.6.9), THEcenterJacobian (§3.6.10), THEcellVolume (§3.6.11), THEfaceNor-
mal (§3.6.12), THEcenterNormal (§3.6.13), THEfaceArea (§3.6.14), THEcenterArea (§3.6.15), THEvertexBoundaryNor-
mal (§3.6.16), THEcenterBoundaryNormal (§3.6.17), THEcenterBoundaryTangent (§3.6.18), THEminMaxEdgeLength
(§3.6.19), THEboundingBox (§3.6.20), THEusualSuspects (§3.6.21) and EVERYTHING (§3.6.22), as well as any of the
corresponding constants allowed for GenericGrid::destroy(what) (§2.1.12), may be bitwise ORed together to form the op-
tional argument what. The corresponding function destroy(what) (§2.1.12) is called with the same argument for the base class
GenericGrid.

3.1.19 void getlnverseCondition(MappedGrid& g2, const RealArray& xrl, const RealArray& rx2, const RealAr-
ray& condition)
g2 (INPUT) The MappedGrid whose inverse mapping was used to compute rx2.

xrl (INPUT) Dimensions: (N, 0:2,0:2)
The derivative of the mapping of this MappedGrid. The range of points N for which the inverse condition is computed
is determined by the first dimension of xr1. The first dimension of rx2 and condition should be the same as the first the
dimension of xr1.

rx2 (INPUT) Dimensions: (N, 0:2,0: 2)
The inverse derivative of the mapping of MappedGrid g2.

condition (OUTPUT) Dimensions: (N)
The condition number of the inverse.

This function computes the condition number of the mapping inverse.
condition(i) = ||diag (1/92.gridSpacing(«)) [rx2(i, ,)] [Xrl1(i, x,)] diag (gridSpacing(+))|| _

3.1.20 void specifyProcesses(const Range& range)

Specify the set of processes over which MappedGridFunctions are distributed. We now support only the specification of a
contiguous range of virtual process 1Ds.

3.1.21 virtual void initialize(const Integer& numberOfDimensions_)

Initialize the MappedGrid with the given number of dimensions. The number of dimensions given must be consistent with the
number of dimensions of the Mapping used by the grid.

3.2 Public Member functionsfor accessto data

3.2.1 const Integer& numberOfDimensions() const

This function returns a reference to the number of dimensions of the domain.

3 CLASSMAPPEDGRID 16

3.2.2 const IntegerArray& dimension() const

Dimensions: (0:1,0:2)

dimension() holds the dimensions (lower and upper index bounds) for the indices corresponding to coordinates in the parameter
space of the grid, of MappedGridFunctions of all types defined on the grid. dimension(i,j) refers to the side of the grid
corresponding to the coordinate value r; = ¢ in the parameter space of the grid. If the grid has ghost points, then dimension() #
gridindexRange(). For the extra dimensions numberOfDimensions() < j < 2, if any, dimension(s, j) = 0. This data is
always recomputed by the function update(what,how) (§3.1.16).

3.2.3 const IntegerArray& indexRange() const

Dimensions: (0:1,0:2)

indexRange() holds the range of indices of the discretization points. indexRange(i,j) refers to the side of the grid corresponding
to the coordinate value r; = ¢ in the parameter space of the grid. In those coordinate directions j where the grid is neither cell-
centered nor periodic, and for j > numberOfDimensions(), the discretization points have the same index range as the vertices
of the grid, so indexRange(i, j) = gridlndexRange(:, j) for i« = 0 and for ¢ = 1. In cell-centered or periodic coordinate
directions j, the first discretization point has the same index as the first vertex, so indexRange(0, j) = gridIndexRange(0, j),
but there is one discretization point fewer than the number of vertices, so indexRange(1, j) = gridindexRange(1, j) — 1. For
the extra dimensions numberOfDimensions() < j < 2, if any, indexRange(s, j) = 0. This data is always recomputed by the
function update(what,how) (§3.1.16).

3.2.4 const IntegerArray& extendedIndexRange() const

Dimensions: (0:1,0:2)

extendedIndexRange() holds the range of indices of the discretization points and interpolation points. extendedIn-
dexRange(i,j) refers to the side of the grid corresponding to the coordinate value r; = 4 in the parameter space of the
grid. On those sides of the grid (¢, j) where the grid has a non-zero boundary condition, or where the grid is periodic in
coordinate direction j, and for ; > numberOfDimensions(), the interpolation points have the same index range as the
discretization points, so extendedIndexRange(i,7) = indexRange(i, 7). On those sides of the grid (¢, j) where the grid
has a zero boundary condition, the index range of the interpolation points extends outside the index range of the discretiza-
tion points by the lesser of (discretizationWidth(j) — 1)/2 and numberOfGhostPoints(i, j). For the extra dimensions
numberOfDimensions() < j < 2, if any, extendedIndexRange(i, j) = 0. This data is always recomputed by the func-
tion update(what,how) (§3.1.16).

3.2.5 const IntegerArray& gridindexRange() const

Dimensions: (0:1,0:2)

gridindexRange() holds the range of indices of the grid vertices. gridIndexRange(i,j) refers to the side of the grid correspond-
ing to the coordinate value r; = 4 in the parameter space of the grid. For the extra dimensions numberOfDimensions() < j <
2, if any, gridindexRange(7, j) = 0. This data may be set using the function setGridIndexRange(ks,kd,gridindexRange.)
(§3.2.6).

3.2.6 void setGridIndexRange(const Integer& ks, const Integer& kd, const Integer& gridindexRange)
This function is used to change the value of gridindexRange() (§3.2.5). If the new value is different from the old value, then
all geometric data is destroyed.

3.2.7 const IntegerArray& numberOfGhostPoints() const

Dimensions: (0:1,0:2)

numberOfGhostPoints() holds the number of ghost point vertices on each side of the grid. numberOfGhostPoints(i,j) refers
to the side of the grid corresponding to the coordinate value r; = 4 in the parameter space of the grid. The number of ghost
points is the difference between the corresponding bounds on the grid vertex index range and on the dimensions, so

numberOfGhostPoints(i, j) = (—1)*(gridIndexRange(i, j) — dimension(s, j)).

This data may be set using the function setNumberOfGhostPoints(ks,kd,numberOfGhostPoints_) (§3.2.8).

3 CLASSMAPPEDGRID 17

3.2.8 void setNumberOfGhostPoints(const Integer& ks, const Integer& kd, const Integer& numberOfGhostPoints_)

This function is used to change the value of numberOfGhostPoints() (§3.2.7). If the new value is different from the old value,
then all geometric data is destroyed.

3.2.9 const Logical& useGhostPoints() const

This function returns a reference to a flag that is LogicalTrue (non-zero) if and only if ghost points on the grid are
used on boundaries where the boundary condition is zero. This data may be set using the function setUseGhost-
Points(useGhostPoints_) (§3.2.10).

3.2.10 void setUseGhostPoints(const Logical& useGhostPoints_)

This function is used to change the value of useGhostPoints() (§3.2.9). If the new value is different from the old value, then all
geometric data is destroyed.

3.2.11 const IntegerArray& discretizationWidth() const

Dimensions: (0: 2)

discretizationWidth() holds the width of the interior discretization stencil. This means that every interior discretization point
is guaranteed to have available to it a stencil of this width consisting of valid points for use in the discretization of a PDE. Points
that are so close to the boundary that such a stencil would extend outside the grid are not considered to be interior discretization
points, but may be boundary discretization points. discretizationWidth(i) refers to the width of the stencil in the direction corre-
sponding to the coordinate r; in the parameter space of the grid. For the extra dimensions numberOfDimensions() < i < 2, if
any, discretizationWidth(¢) = 0. This data may be set using the function setDiscretizationWidth(kd,discretizationWidth_)
(§3.2.12).

3.2.12 void setDiscretizationWidth(const Integer& kd, const Integer& discretizationWidth.)
This function is used to change the value of discretizationWidth() (§3.2.11).

3.2.13 const IntegerArray& boundaryDiscretizationWidth() const

Dimensions: (0:1,0:2)

boundaryDiscretizationWidth() holds the width of the boundary condition discretization stencil in the direction normal to
the boundary, on each side of the grid. This means that every boundary discretization point is guaranteed to have available to
it a one-sided stencil of this width consisting of valid points for use in the discretization of boundary conditions. This stencil
includes points on the boundary and extends from there into the interior of the grid. boundaryDiscretizationWidth(i,j) refers
to the side of the grid corresponding to the coordinate value ~; = ¢ in the parameter space of the grid. The boundary condition
stencil width does not consider any ghost points. It considers only points on the boundary and inside the grid. In addition,
any number of ghost points may be used as needed for the discretization of boundary conditions. For the extra dimensions
numberOfDimensions() < 5 < 2, if any, boundaryDiscretizationWidth(i, j) = 0. This data may be set using the function
setBoundaryDiscretizationWidth(ks,kd,boundaryDiscretizationWidth_) (§3.2.14).

3.2.14 void setBoundaryDiscretizationWidth(const Integer& ks, const Integer& kd, const Integer& boundaryDis-
cretizationWidth_)

This function is used to change the value of boundaryDiscretizationWidth() (§3.2.13).

3.2.15 const IntegerArray& boundaryCondition()

Dimensions: (0:1,0:2)
boundaryCondition() holds the boundary condition flags, which indicate how each side of the grid is used; boundaryCondi-
tion(i,j) refers to the side of the grid corresponding to the coordinate value r; = 7 in the parameter space of the grid.

<0 = Thedomain is periodic in the coordinate ;.
boundaryCondition(i, j) =0 = The side corresponding to r; = i may only interpolate.
>0 = The side corresponding to r; = ¢ is part of the domain boundary.

For the extra dimensions numberOfDimensions() < j < 2, if any, boundaryCondition(i,j) = —1. This data may be set
using the function setBoundaryCondition(ks,kd,boundaryCondition_) (§3.2.16).

3 CLASSMAPPEDGRID 18

3.2.16 void setBoundaryCondition(const Integer& ks, const Integer& kd, const Integer& boundaryCondition_)
This function is used to change the value of boundaryCondition() (§3.2.15).

3.2.17 const IntegerArray& sharedBoundaryFlag() const

Dimensions: (0:1,0:2)

sharedBoundaryFlags() holds the shared boundary flags, which may be used to indicate which sides of the grid correspond to
the same feature of the domain boundary. Different features of the domain boundary may be distinguished from each other by
their being separated by an edge or corner of the domain. Sides of grids which correspond to the same feature of the domain
boundary ideally should match exactly where they overlap or should at least intersect only tangentially. In practice this is often
impossible to ensure (especially in the case of grids whose mappings are defined discretely, for example, mappings based on
splines), so this flag is useful in order to identify those cases where such was the intention. sharedBoundaryFlag(i,j) refers to
the side of the grid corresponding to the coordinate value r; = ¢ in the parameter space of the grid. A unique non-zero flag
value should be assigned to sharedBoundaryFlag(i,j) for all of those sides of grids that correspond to the same feature of the
domain boundary. For the extra dimensions numberOfDimensions() < j < 2, if any, sharedBoundaryFlag(i, j) = 0. This
data may be set using the function setSharedBoundaryFlag(ks,kd,sharedBoundaryFlag.) (§3.2.18).

3.2.18 void setSharedBoundaryFlag(const Integer& ks, const Integer& kd, const Integer& sharedBoundaryFlag.)
This function is used to change the value of sharedBoundaryFlag() (§3.2.17).

3.2.19 const RealArray& sharedBoundaryTolerance() const

Dimensions: (0:1,0:2)

sharedBoundaryTolerance() holds the shared boundary error tolerance, which indicates by how much the mapping that gen-
erates the grid may deviate from the ideal domain boundary on each side of the grid, normalized to the width of grid cells in
the direction normal to the boundary. In the case where the ideal domain boundary is unknown, sharedBoundaryTolerance
is a useful estimate of the mismatch between sides of the grid that correspond to the same feature of the domain boundary, as
identified by sharedBoundaryFlag() (§3.2.17). sharedBoundaryTolerance(i,j) refers to the side of the grid corresponding to
the coordinate value r; = ¢ in the parameter space of the grid. This data may be set using the function setSharedBoundary-
Tolerance(ks,kd,sharedBoundaryTolerance_) (§3.2.20).

3.2.20 void setSharedBoundaryTolerance(const Integer& ks, const Integer& kd, const Real& sharedBoundaryToler-
ance.)

This function is used to change the value of sharedBoundaryTolerance() (§3.2.19).

3.2.21 const RealArray& gridSpacing() const
Dimensions: (0: 2)
The grid spacing in the direction of the coordinate r; in the parameter space of the grid is

1
gridindexRange(1,4) — gridindexRange(0, i)

gridSpacing(i) =

For the extra dimensions numberOfDimensions() < ¢ < 2, if any, gridSpacing(i) = 1. This data is always recomputed by
the function update(what,how) (§3.1.16).

3.2.22 const LogicalArray& isCellCentered() const

Dimensions: (0:2)

The flag isCellCentered(i) is LogicalTrue (non-zero) if and only if i < numberOfDimensions() and the grid is cell-centered
in the direction corresponding to the coordinate r; in the parameter space of the grid. Cell-centered in direction 7 means that
discretization points lie at positions

- (j + & — indexRange(0, i)) gridSpacing(i) if isCellCentered(i)
v (7 — indexRange(0, 7)) gridSpacing(i) otherwise

for indexRange(0,i) < j < indexRange(1,7). This data may be set using the function setlsCellCen-
tered(kd,isCellCentered.) (§3.2.23).

3 CLASSMAPPEDGRID 19

3.2.23 void setlsCellCentered(const Integer& kd, const Logical& isCellCentered_)

This function is used to change the value of isCellCentered() (§3.2.22). If the new value is different from the old value, then
all geometric data is destroyed. See also changeToAllVertexCentered() (§3.1.11) and changeToAlICellCentered() (§3.1.12).

3.2.24 const Logical& isAllCellCentered() const

This function returns a reference to a flag that is LogicalTrue (non-zero) if and only if the grid is cell-centered in all directions.
This means that the discretization points are grid cell centers. This flag is always recomputed by the function update(what,how)
(§3.1.16). See also isCellCentered() (§3.2.22).

3.2.25 const Logical& isAllVertexCentered() const

This function returns a reference to a flag that is LogicalTrue (non-zero) if and only if the grid is vertex-centered in all
directions. This means that the discretization points are grid vertices. This flag is always recomputed by the function up-
date(what,how) (§3.1.16). See also isCellCentered() (§3.2.22).

3.2.26 const IntegerArray& isPeriodic() const

Dimensions: (0: 2)

isPeriodic(i) describes the periodicity of the grid, the mapping that generates the grid, and all MappedGridFunctions defined
on the grid. isPeriodic(i) is zero (non-periodic) if and only if i < numberOfDimensions() and either the derivative of the
mapping that generates the grid is not periodic in the direction corresponding to the coordinate r; in the parameter space of the
grid, or the periodicity of the domain does not correspond to the periodicity of the derivative of the mapping in this direction.
Two cases exist when the periodicity of the mapping corresponds to the periodicity of the domain: either the mapping itself
is periodic or it is not. (In the latter case the mapping differs from a periodic function by a linear function.) These two cases
are distinguished by different non-zero values of the flag isPeriodic(i). All MappedGridFunctions defined on the grid should
have the same periodicity as the mapping; in each direction where the mapping is periodic, all MappedGridFunctions should
be periodic, and in each direction where the derivative of the mapping is periodic, the derivatives of all MappedGridFunctions
should be periodic. The possible values of isPeriodic(i) are

Mapping::notPeriodic = 0 The derivative of the mapping is not periodic.
isPeriodic(i) = ¢ Mapping::derivativePeriodic The derivative is periodic but the mapping is not.
Mapping::functionPeriodic ~ The mapping is periodic.

This data may be set using the function setlsPeriodic(kd,isPeriodic_) (§3.2.27).

3.2.27 void setlsPeriodic(const Integer& kd, const Mapping::periodicType& isPeriodic_)

This function is used to change the value of isPeriodic() (§3.2.26). If the new value is different from the old value, then all
geometric data is destroyed. It is important to be sure that the setting of isPeriodic should be consistent with the topology of
the mapping that defines the geometry of the grid.

3.2.28 const RealArray& minimumEdgeLength() const

Dimensions: (0: 2)

minimumEdgeLength() holds the minimum grid cell-edge length over all cell edges in the interior and the boundary of the
grid, for each coordinate direction in the parameter space of the grid. minimumEdgeLength(i) refers to edges of the cells
corresponding to the coordinate direction r;. This geometric data may be updated as in the following example. See also
THEminMaxEdgeL ength (§3.6.19) and update(what,how) (§3.1.16).

3.2.29 const RealArray& maximumEdgelLength() const

Dimensions: (0: 2)

maximumEdgeLength() holds the maximum grid cell-edge length over all cell edges in the interior and the boundary of the
grid, for each coordinate direction in the parameter space of the grid. maximumEdgeLength(i) refers to edges of the cells
corresponding to the coordinate direction r;. This geometric data may be updated as in the following example. See also
THEminMaxEdgelLength (§3.6.19) and update(what,how) (§3.1.16).

3 CLASSMAPPEDGRID 20

3.2.30 const RealArray& boundingBox() const

Dimensions: (0:1,0:2)

boundingBox() holds coordinate bounds for the grid vertices, including all boundary vertices but excluding any ghost vertices.
This geometric data may be updated as in the following example. See also THEboundingBox (§3.6.20) and update(what,how)
(§3.1.16).

3.2.31 const Integer= 11() const; const Integerx 12() const; const Integerx 13() const

11(), 12() and 13() return pointers that may be used as arrays for indirect scalar addressing of MappedGridFunctions on peri-
odic grids. This is useful for indices that lie in a discretization or interpolation stencil that extends outside the range of indices
given by indexRange() (§3.2.3). For example, you might want to index mask() (§3.2.32) as mask()(11()[¢], 12()[4], 13()[k])
instead of mask()(z, 7, k) in case (4, j, k) might lie outside the range of discretization points of the grid. The indirect addressing
arrays are defined for indices which lie outside by at most sixteen. If you anticipate using stencils wider than this limit would
accomodate, then we can increase it for you.

3.2.32 IntegerMappedGridFunction& mask()

Dimensions: (doo: dyg, do1: dlla doa: d12), where dij = dimenSion(’i,j).

mask() holds a flag for each point (e.g., vertex or cell-center), which indicates how that point should be used. Various bits of
the mask may be tested by ANDing the mask with any of the constants I1SdiscretizationPoint (§3.6.27), I1SinterpolationPoint
(83.6.28), 1SghostPoint (§3.6.29), ISinteriorBoundaryPoint (§3.6.30), USESbackupRules (§3.6.31), IShiddenByRefine-
ment (§3.6.32) or ISusedPoint (§3.6.37), and checking if the result is non-zero.

& ISdiscretizationPoint # 0 = discretization point
& ISinterpolationPoint # 0 = interpolation point
& 1SghostPoaint # 0 =- ghost point near a disc. or interp. boundary point.
mask() (4,7, k) < & ISinteriorBoundaryPoint 20 =- boundary point in the interior of another grid
& USESbackupRules # 0 = discretization or interpolation uses backup rules
& I1ShiddenByRefinement # 0 = hidden by points on a refinement grid
& I1SusedPoint = 0 = neither discretization nor interpolation point

This data may be updated as in the following example. See also THEmask (§3.6.1) and update(what,how) (§3.1.16).

3.2.33 RealMappedGridFunction& vertex()

Dimensions: (doo: d1o, do1: d11, doz: d12,0: 1), where d;; = dimension(s, j) and n; = numberOfDimensions() — 1.
vertex() holds the coordinates of the vertices of the grid, including any ghost vertices (which lie outside the grid).

vertex()(io, i1, i2, %) = g(r), Where r; = (i; — indexRange(0, j)) gridSpacing(j),

dimension(0, j) <1i; < dimension(1, j), and g is the mapping that generates the grid. This geometric data may be updated as
in the following example. See also THEvertex (§3.6.2) and update(what,how) (§3.1.16).

3.2.34 RealMappedGridFunction& center()

Dimensions: (doo: dio, do1: d11, do2: d12,0: n1), where d;; = dimension(s, j) and n; = numberOfDimensions() — 1.
center() holds the coordinates of the discretization points of the grid, (e.g., the vertices or the grid cell-centers), including any
ghost points (which lie outside the grid).

(i; + 3 — indexRange(0, j)) gridSpacing(j) if isCellCentered(;)

center()(io, i1, i, %) = g(r), where ;= { (i; — indexRange(0, j)) gridSpacing(j) otherwise,

dimension(0, j) <4, < dimension(1, j), and g is the mapping that generates the grid. If center() is updated using a discrete
approximation, then it is not computed using the mapping, but is instead computed by averaging corner() (§3.2.35) in each
direction:
center()(ig, i1, iz, %) = (H uﬂ-)corner()(im i1, i, %).
J

Warning: In the case of a vertex-centered grid, center() is not computed by averaging corner, but is equal to, and may be
aliased to, vertex() (§3.2.33). This geometric data may be updated as in the following example. See also THEcenter (§3.6.3)
and update(what,how) (§3.1.16).

3 CLASSMAPPEDGRID 21

3.2.35 RealMappedGridFunction& corner()

Dimensions: (doo: d10, do1: d11, doz2: d12,0: 1), Where d;; = dimension(z, j) and n, = numberOfDimensions() — 1.
corner() holds the coordinates of the corners of cells centered at the discretization points of the grid, (e.g., the vertices or the
grid cell-centers), including any ghost points (which lie outside the grid).

(i; — indexRange(0, j)) gridSpacing(j) if isCellCentered ;)

corner()(io, ir, 2,) = g(r), where r; = { (i; — & — indexRange(0, 5)) gridSpacing(j) ~otherwise,

dimension(0, j) < i; < dimension(1, j), and g is the mapping that generates the grid. Note: In the case of a cell-centered
grid, corner() is equal to, and may be aliased to, vertex() (§3.2.33). This geometric data may be updated as in the following
example. See also THEcorner (§3.6.4) and update(what,how) (§3.1.16).

3.2.36 RealMappedGridFunction& vertexDerivative()

Dimensions: (doo: dio, do1: d11, doz: d12,0: 71, 0: n1), where d;; = dimension(¢, j) and n; = numberOfDimensions() — 1.
vertexDerivative() holds the derivative of the mapping at the vertices of the grid, including any ghost vertices (which lie outside
the grid).

dg

vertexDerivative()(ig, i1, 92, %, j) = o
T

where r; = (i; — indexRange(0, j)) gridSpacing(;),
dimension(0, j) < ¢; < dimension(1, j), and g is the mapping that generates the grid. If vertexDerivative() is updated using
a discrete approximation, then it is not computed using the mapping, but is instead computed by centered finite differences of
vertex:

- 1
vertexDerivative()(ig, i1, 92, %, j) = ————Ao;jvertex()(io, i1, 2, *),
2A’I"j
where Ar; = gridSpacing(j). This geometric data may be updated as in the following example. See also THEvertexDeriva-
tive (§3.6.5) and update(what,how) (§3.1.16).

3.2.37 RealMappedGridFunction& centerDerivative()

Dimensions: (doo: d10, do1: di11, doz2: di2,0:nq,0: 1), where d;; = dimension(s, j) and n; = numberOfDimensions() — 1.
centerDerivative() holds the derivative of the mapping at the discretization points of the grid, including any ghost points (which
lie outside the grid).

9g
8’["j ’

[(ij + 3 — indexRange(0, j)) gridSpacing(j) if isCellCentered(j)
"= (i; — indexRange(0, j)) gridSpacing(j) otherwise,

centerDerivative() (ig, i1, 92, *, j) = where

dimension(0, j) < ¢; < dimension(1, j), and g is the mapping that generates the grid. If centerDerivative() is updated using
a discrete approximation, then it is not computed using the mapping, but is instead corner() (§3.2.35):

centerDerivative() (ig, i1, 92, *,j) = (H M+k> ALAHcorner()(io,il,z‘g, *).
kg "
where Ar; = gridSpacing(j). Warning: In the case of a vertex-centered grid, centerDerivative() is not computed by differ-

encing and averaging corner(), but is equal to, and may be aliased to, vertexDerivative() (§3.2.36). This geometric data may
be updated as in the following example. See also THEcenterDerivative (§3.6.6) and update(what,how) (§3.1.16).

3.2.38 RealMappedGridFunction& inverseVertexDerivative()

Dimensions: (doo: dio, do1: d11, do2: d12,0: 71, 0: n1), where d;; = dimension(4, j) and n; = numberOfDimensions() — 1.
inverseVertexDerivative() holds the inverse of the derivative of the mapping at the vertices of the grid, including any ghost
vertices (which lie outside the grid).
[inverseVertexDerivative() (ig, i1, io, ¥, *)] = [vertexDerivative()(ig, i1, 42, %, %) = B—r] .
X

This geometric data may be updated as in the following example. See also vertexDerivative() (§3.2.36), THEinverseVer-
texDerivative (§3.6.7) and update(what,how) (§3.1.16).

3 CLASSMAPPEDGRID 22

3.2.39 RealMappedGridFunction& inverseCenterDerivative()

Dimensions: (doo: d10, do1: di11, do2: di2,0:nq,0: 1), where d;; = dimension(z, j) and n; = numberOfDimensions() — 1.
inverseCenterDerivative() holds the inverse of the derivative of the mapping at the discretization points of the grid, (eg., the
vertices or the grid cell-centers), including any ghost points (which lie outside the grid).

[inverseCenterDerivative() (i, i1, s, *, *)] = [centerDerivative()(ig, i1, i, *,%)] " = [g—}j .
This geometric data may be updated as in the following example. See also centerDerivative() (§3.2.37), THEinverseCenter-
Derivative (§3.6.8) and update(what,how) (§3.1.16).

3.2.40 RealMappedGridFunction& vertexJacobian()

Dimensions: (doo: d1o, do1: d11, doz: d12), Where d;; = dimension(z, 7).
vertexJacobian() holds the determinant of the derivative of the mapping at the vertices of the grid, including any ghost vertices
(which lie outside the grid).

vertexJacobian() (io, i1,i2) = det [%] , Where r; = (i; — indexRange(0, j)) gridSpacing(j),

dimension(0, j) < i; < dimension(1, j), and g is the mapping that generates the grid. If vertexJacobian() is updated using
a discrete approximation, then it is not computed using the mapping, but is instead computed using the same approximation to
the derivative as that used for vertexJacobian() (§3.2.40). This geometric data may be updated as in the following example.
See also vertexDerivative() (§3.2.36), THEvertexJacobian (§3.6.9) and update(what,how) (§3.1.16).

3.241 RealMappedGridFunction& centerJacobian()

Dimensions: (doo: dio, do1: d11, do2: di12), Where d;; = dimension(z, 7).
centerJacobian() holds the determinant of the derivative of the mapping at the discretization points of the grid, including any
ghost points (which lie outside the grid).

dg

centerJacobian()(ig, i1,12) = det [E] , Where

| (i; + 3 — indexRange(0, j)) gridSpacing(j) if isCellCentered(;)
A (i; — indexRange(0, j)) gridSpacing(j) otherwise,

dimension(0, j) < ¢; < dimension(1, j), and g is the mapping that generates the grid. If centerJacobian() is updated using
a discrete approximation, then it is not computed using the mapping, but is instead computed using the same approximation to
the derivative as that used for centerDerivative() (§3.2.37). This geometric data may be updated as in the following example.
See also centerDerivative() (§3.2.37), THEcenterJacobian (§3.6.10) and update(what,how) (§3.1.16).

3.2.42 RealMappedGridFunction& cellVolume()

Dimensions: (doo: d1o, do1: d11, doz: d12), Where d;; = dimension(z, 7).
cellVolume() holds the volumes of cells centered at the discretization points of the grid, including any ghost cells (which lie
outside the grid).

cellVolume() (io, i1, 12) = (HArj) det Bg} , Where
; r
J

[(ij + 3 — indexRange(0, j)) gridSpacing(j) if isCellCentered(;)
A (i; — indexRange(0, j)) gridSpacing(j) otherwise,

Ar; = gridSpacing(;j), dimension(0, j) < i; < dimension(1, j), and g is the mapping that generates the grid. cellVolume()
has the same sign as the determinant of the derivative of the mapping. (/.e, it may be negative.) If cell\Volume() is updated using
a discrete approximation, then it is not computed using the mapping, but is instead computed in one dimension as the distance
between surrounding corners, approximated in two dimensions by the area of the polygon bounded by the surrounding corners,
and approximated in three dimensions by the volume of the solid bounded by the surrounding corners, with the approximation
that the four corners of each face are assumed to be coplanar. This geometric data may be updated as in the following example.
See also THEcellVolume (§3.6.11) and update(what,how) (§3.1.16).

3 CLASSMAPPEDGRID 23

3.2.43 RealMappedGridFunction& faceNormal()

Dimensions: (doo: d10, do1: di11, do2: di2,0:nq,0: 1), where d;; = dimension(s, j) and n; = numberOfDimensions() — 1.
faceNormal() holds vectors normal to faces of cells centered at the discretization points (including any ghost cell faces),
normalized to the cell-face area. The normal to cell face (49, 41, i2) corresponding to constant r; is given by

a9

0
faceNormal() (g, i1, i2, *,j) = ArkArla—g X B where k = (j + 1) mod 3, [= (j + 2) mod 3,
TL T

where Ar; =1 for j > ny, g—ff:_ = 0;; fori > ng or j > ng, ng = numberOfDimensions() — 1, Ar; = gridSpacing(j),

(i, — indexRange(0, k)) gridSpacing(k) if k = j and isCellCentered(k), or else
_ i + % — indexRange(0, k)) gridSpacing(k) ifk = j, or
k= ir — 5 — indexRange(0, k)) gridSpacing(k) if isCellCentered(k), or else
(i, — indexRange(0, k)) gridSpacing(k) otherwise,
dimension(0,k) < 4 < dimension(1,k), and g is the mapping that generates the grid. In particular,

faceNormal() (i, i1, i2,0,0) = 1 if numberOfDimensions() = 1. If faceNormal() is updated using a discrete approxi-
mation, then the derivatives are not computed using the mapping, but are instead computed by centered finite differences of
corner() (§3.2.35), (averaged in three dimensions to the centers of cell faces). As a result, in two dimensions,

faceNormal()(¢,4,k,*,0) = A corner(i,j, k,*)
faceNormal() (¢, j, k,*,1) = —A_;corner(i,j,k,)

and in three dimensions,

faceNormal() (i, i1, ia, *, j)

ti, A, corner(io, iz, i, %) X fiyi, Ayq,cOMNEr(ig,i;, 2, *)

1 L L
= §A/+ik+ilcorner(zo7zl,m,*) X A< i, +i,COrNer(ig, i1, iz, *)

where k = (j+1) mod 3,1 = (]+2) mod 3, A/+i+]‘uij = Uit1,541— Uij and A_i_H_ju,-j = U j+1—Ui41,5- This geometriC
data may be updated as in the following example. See also THEfaceNormal (§3.6.12) and update(what,how) (§3.1.16).

3.2.44 RealMappedGridFunction& centerNormal()

Dimensions: (doo: d1o, do1: d11, doz: d12,0: 1, 0: n1), where d;; = dimension(s, j) and n; = numberOfDimensions() — 1.
The normal to the surface corresponding to constant »; and passing through the discretization point (¢, i1, ¢2), normalized to
the area of that portion of this surface which corresponds one cell, is given by

g9 99

centerNormal() (o, i1, i2, %,) = ArgAr;—

—, wherek=(j+1 d3,l1=(+2 d 3,
oy = oy (j+1) mo (j +2) mo

where Ar; =1 for j > ny, g—% = 4,5 fori > ng or j > ng, ng = numberOfDimensions() — 1, Ar; = gridSpacing(j),

[(ix + % — indexRange(0, k)) gridSpacing(k) if isCellCentered(k)
k= (ir — indexRange(0, k)) gridSpacing(k) ~otherwise,

dimension(0,k) < 4, < dimension(l,k), and g is the mapping that generates the grid. In particular,
centerNormal() (49, 41, 42,0,0) = 1 if numberOfDimensions() = 1. In fact, centerNormal() is related to inverseCen-
terDerivative() (§3.2.39) and centerJacobian() (§3.2.41):

[centerNormal()(ig, i1, 2, *,%)] = (HArj>centerJacobian()(io,il,ig) [inverseCenterDerivative()(ig, i1, ia, *, ¥)]" .
J

If centerNormal() is updated using a discrete approximation, then it is obtained by averaging faceNormal() (§3.2.43) from

the face-centers to the discretization points. This geometric data may be updated as in the following example. See also
THEcenterNormal (§3.6.13) and update(what,how) (§3.1.16).

3 CLASSMAPPEDGRID 24

3.2.45 RealMappedGridFunction& faceArea()

Dimensions: (doo: d10, do1: d11, doz2: di2,0: 1), Where d;; = dimension(z, j) and n, = numberOfDimensions() — 1.
faceArea() holds the areas of faces of cells centered at the discretization points (including any ghost cell faces). The area of the
cell face (49, i1, 2) corresponding to constant r; is given by

faceArea()(io, i1, 42, 7) = |faceNormal()(io, i1, 2, *, j) |-

This geometric data may be updated as in the following example. See also faceNormal() (§3.2.43), THEfaceArea (§3.6.14)
and update(what,how) (§3.1.16).

3.2.46 RealMappedGridFunction& centerArea()

Dimensions: (doo: d1o, do1: d11, doz: d12,0: n1), where d;; = dimension(s, j) and n; = numberOfDimensions() — 1.
centerArea() holds the areas of those portions of surfaces corresponding to a constant parameter value, passing through the
discretization points, which are contained within the cells centered at these points (including any ghost cells). The area of the
portion of the surface passing through the cell centered at the discretization point (4o, 1,42) and corresponding to constant r;
is given by

centerArea()(ig, i1,42,7) = \centerNormaI()(io, 11,19, *,j)].

This geometric data may be updated as in the following example. See also centerNormal() (§3.2.44), THEcenterArea
(§3.6.15) and update(what,how) (§3.1.16).
3.2.47 RealMappedGridFunction& vertexBoundaryNormal(const Integer& Kk, const Integer& 1)

Dimensions of vertexBoundaryNormal(k,l): (doo: d10, do1: d11, do2: d12, 0: n1), where

g — dimension(k, j) ifj =1
“ dimension(s, j) otherwise

and n; = numberOfDimensions() — 1.
vertexBoundaryNormal holds unit outward normal vectors to the boundary at the boundary vertices. The normal correspond-
ing to the side of the grid where r; = ¢ is given by

0 0
vertexBoundaryNormal(i, §) (iq, i1, iz, %) = i(—l)iHH, where k = (j + 1) mod 3, [= (j + 2) mod 3,
are X o
g’f_; = 4, for i > ng or j > ng, ng = numberOfDimensions() — 1,
rm = (im — indexRange(0, m)) gridSpacing(m),
dimension(0,m) < 4, < dimension(l,m), and g is the mapping that generates the grid. In particular,

vertexBoundaryNormal (i, 0)(ig, i1, 42,0) = 4(—1)**! if numberOfDimensions() = 1. The upper sign is taken if the
coordinate system is right-handed and the lower sign if it is left-handed; the sign taken is that of the jacobian of the mapping,

det [g—ﬂ at the center of the grid ro = r; = ro = 3. If vertexBoundaryNormal is updated using a discrete approximation,

then the derivatives are not computed using the mapping, but are instead computed by centered finite differences of vertex. As
a result, in two dimensions,

1 Aoi,vertex()(ig, 91,1
vertexBoundaryNormal(i, 0)(ig, i1, i2, ¥) = =+(—1)"*+1 =22 ()(2_0’2,1’1_2’*)
’AOilverteX()(Zo, 11,192, *)|
1 Agi vertex()(ig, 91,1
vertexBoundaryNormal (i, 1) (io, i1, i, ¥) = F(—1)"T1 =2 ()(Z,O’Z_l’z_g’*) ,
’AOioverteX()(Z(), 11,19, *)|

and in three dimensions,

i+1 AOikvertex(io, 1i,12, *) X AOilverteX(io, i, 12, *)

vertexBoundaryNormal(i, j)(ig, i1, i2, *) = +(—1
y (J)(0,772) () ’AOikverteX(io,ii,ig,*) X AOilvertEX(i(),ii,Z'g,*”

where k = (j + 1) mod 3and I = (j + 2) mod 3. This geometric data may be updated as in the following example. See also
THEvertexBoundaryNormal (§3.6.16) and update(what,how) (§3.1.16).

3 CLASSMAPPEDGRID 25

3.2.48 RealMappedGridFunction& centerBoundaryNormal(const Integer& k, const Integer&)

Dimensions of centerBoundaryNormal(k,1): (doo: d10, do1: d11, do2: d12,0: ny), where

g — dimension(k, j) ifj =1
77" dimension(i,j) otherwise

and n; = numberOfDimensions() — 1.

centerBoundaryNormal holds unit outward normal vectors to the boundary at the discretization points of the boundary. Note
that for a cell-centered grid, these points are not the cell-centers of boundary cells, but are the centers of the faces of boundary
cells. The normal corresponding to the side of the grid where r; = 4 is given by

09 . 99
centerBoundaryNormal(i,) (io, i1, ia, *) = i(—l)i“%, where k = (j +1) mod 3,1 = (j + 2) mod 3,

ore < oy

gfj_ = §;; fori > ng or j > ng, np = numberOfDimensions() — 1,

1 ifm =7, orelse
rm =14 (im + 3 — indexRange(0, m)) gridSpacing(m) if isCellCentered(m)
(im — indexRange(0,m)) gridSpacing(m) otherwise,
dimension(0,m) < 4, < dimension(l,m), and g is the mapping that generates the grid. In particular,

centerBoundaryNormal(i, 0)(ig, i1, i2,0) = £(—1)**! if numberOfDimensions() = 1. The upper sign is taken if the
coordinate system is right-handed and the lower sign if it is left-handed; the sign taken is that of the jacobian of the mapping,

det [g—ﬂ at the center of the grid rg = r1 = ro = % If centerBoundaryNormal is updated using a discrete approximation,

then the derivatives are not computed using the mapping, but are instead computed by centered finite differences of corner, for
the case of a cell-centered grid. As a result, in two dimensions,

1 Ay corner()(ig, i1, i,
centerBoundaryNormal(i, 0)(iq, i1, ip, %) = +(—1)"1—4 ()(Z_O 1,02)
|A i, corner() (ig, i1, iz,)|
N iv1 Agi corner() (i, i1, iz, *)
centerBoundaryNormal(i, 1)(ig, é1,42,%) = F(-1) — 7 .
|Ayi,corner () (ig, i1, iz,)|

In three dimensions,

centerBoundaryNormal(4, j)(ig, 1, 92, *)

ix1 M Ay, COMMEr(ig,d;, i, %) X fiq4, Ay ;,COMNer (g, i;, iz, *)
| 1143, Ay, COTNEN (G, i, i, %) X iy, Ay, COMNEN (dg, 7, iz, %)|

i+1 A/+ik+izcorner(
|A i+, c0rner(

==(-1)

—4(-1) 10,91, 92, %) X Ax_4i,+i,COMNer(ig, i1, iz, *)

.)
10511, 72, %) X Ax i 4+, COMNEI (g, i1, i2, %)

where k = (] + 1) mod 3, | = (] + 2) mod 3, A/HHUU = Ujtl,54+1 — WUij and A\Hﬂ-uij = Ui 41 — Uit j- If
the grid is not cell-centered in the normal direction j, then the difference approximations are applied not to corner itself,
but are applied instead to what corner would be, were the grid cell-centered in the the normal direction. Warning: In the
case of a vertex-centered grid, centerBoundaryNormal is not computed by differencing corner, but is equal to, and may be
aliased to, vertexBoundaryNormal (§3.2.47). This geometric data may be updated as in the following example. See also
THEcenterBoundaryNormal (§3.6.17) and update(what,how) (§3.1.16).

3.249 RealMappedGridFunction& centerBoundaryTangent(const Integer& K, const Integer& 1)
Dimensions of centerBoundaryTangent(k,l): (doo: d10, do1: d11, dp2: d12,0: nq, 0: ng), where

g — dimension(k, j) ifj=1
771 dimension(i,j) otherwise,

n1 = numberOfDimensions() — 1 and ne = numberOfDimensions() — 2.
centerBoundaryTangent holds unit tangent vectors to the boundary surface at the discretization points of the boundary. Note

3 CLASSMAPPEDGRID 26

that for a cell-centered grid, these points are not the cell-centers of boundary cells, but are the centers of the faces of boundary
cells. The tangents corresponding to the side of the grid where r; = 4 are given by

o)

g

Tk

2]

r

Q)

centerBoundaryTangent(l, i) (io, 41, iz, *,j) =

, where k = (i + j + 1) mod numberOfDimensions(),

«

Q
B

[ifm =i, orelse
rm =14 (im + 5 — indexRange(0, m)) gridSpacing(m) if isCellCentered(m)
(im — indexRange(0,m)) gridSpacing(m) otherwise,

dimension(0,m) < i, < dimension(1,m), and g is the mapping that generates the grid. If centerBoundaryTangent is
updated using a discrete approximation, then the derivatives are not computed using the mapping, but are instead computed by
centered finite differences of corner, for the case of a cell-centered grid. As a result, in two dimensions,

N) Ay, corner(ig, i1, g, *
centerBoundaryTangent(x,)(ig, i1, iz, *, j) = |A+chornergz‘0’ Z_l’ 1‘27 *i’ ,
“+ig 0501502,

and in three dimensions,

N . i AL LCOrNer(ig, i;, i, *
centerBoundaryTangent(, i) (io, i1, 92, *, j) = |Z+”A+kcornergio’i“z‘27*iy’
+i 2tk 0y 03,02,

where kK = (i+j + 1)mod3 and ! = (k + 1) mod 3. If the grid is not cell-centered in the normal direction j, then
the difference approximations are applied not to corner itself, but are applied instead to what corner would be, were the
grid cell-centered in the the normal direction. This geometric data may be updated as in the following example. See also
THEcenterBoundaryTangent (§3.6.18) and update(what,how) (§3.1.16).

3.250 MappingRC& mapping()

mapping() is the reference-counted mapping that generates the grid. The mapping may be replaced as in the following example.
See also reference(const Mapping& x) (§3.1.8) and reference(const MappingRC& x) (§3.1.9).

3.2.51 const Box& box() const

Class Box comes from Boxlib, and is used for adaptive mesh refinement. This function returns a reference to a Box that
describes this MappedGrid.

3.2.52 virtual aString getClassName() const

Get the class name of the most-derived class for this object.

3.2.53 MappedGridDatax* operator—>()

Access the reference-counted data.

3.2.54 MappedGridData& operatorsx()

Access the pointer to the reference-counted data.

3.3 Public member functions called only from derived classes

It is recommended that these functions be called only from derived classes.

3.3.1 void reference(MappedGridData& x)

Make a reference to an object of type MappedGridData. This MappedGrid uses x for its data. It is recommended that this
function be called only from derived classes.

3 CLASSMAPPEDGRID 27

3.3.2 void updateReferences(const Integer what = EVERYTHING)

Update references to the reference-counted data. It is recommended that this function be called only from derived classes.

3.3.3 void setNumberOfDimensions(const Integer& numberOfDimensions.)

This function is used to change the value of numberOfDimensions() (§3.2.1). If the new value is different from the old value,
then all geometric data is destroyed. It is important to be sure that the setting of numberOfDimensions() should be consistent
with the topology of the mapping that defines the geometry of the grid.

3.4 Publicdata

3.4.1 AMR_ParentChildSiblinglnfox parentChildSiblingInfo

This is used for adaptive mesh refinement. Dan Quinlan++ has documentation for it.

3.5 Publicdata used only by derived classes

It is recommended that these variables be used only by derived classes.

3.5.1 MappedGridDatax rcData

rcData is a pointer to the reference-counted data. It is recommended that this variable be used only by derived classes. See also
the member functions operator—>() (§3.2.53) and operatorx() (§3.2.54), which are provided for access to rcData.

3.5.2 Logical isCounted

isCounted is a flag that indicates whether the data pointed to by rcData (§3.5.1) is known to be reference-counted. It is
recommended that this variable be used only by derived classes.

3.6 Public constants

3.6.1 THEmask

THEmask indicates the discretization point mask() (§3.2.32). See also update(what,how) (§3.1.16) and destroy(what)
(§3.1.18).

3.6.2 THEvertex

THEvertex indicates vertex() (§3.2.33), the locations of the vertices of the grid. See also update(what,how) (§3.1.16) and
destroy(what) (§3.1.18).

3.6.3 THEcenter

THEcenter indicates center() (§3.2.34), the locations of the discretization points of the grid. See also update(what,how)
(§3.1.16) and destroy(what) (§3.1.18).

3.6.4 THEcorner

THEcorner indicates corner() (§3.2.35), the locations of the discretization points of the grid. See also update(what,how)
(§3.1.16) and destroy(what) (§3.1.18).

3.6.5 THEvertexDerivative

THEvertexDerivative indicates vertexDerivative() (§3.2.36), the derivative of the mapping at the vertices of the grid. See also
update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.6 THEcenterDerivative

THEcenterDerivative indicates centerDerivative() (§3.2.37), the derivative of the mapping at the discretization points of the
grid. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3 CLASSMAPPEDGRID 28

3.6.7 THEinverseVertexDerivative

THEinverseVertexDerivative indicates inverseVertexDerivative() (§3.2.38), the inverse of the mapping derivative, evaluated
at the vertices of the grid. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.8 THEinverseCenterDerivative

THEinverseCenterDerivative indicates inverseCenterDerivative() (§3.2.39), the inverse of the mapping derivative, evaluated
at the discretization points of the grid. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.9 THEvertexJacobian

THEvertexJacobian indicates vertexJacobian() (§3.2.40), the determinant of the derivative of the mapping at the vertices of
the grid. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.10 THEcenterJacobian

THEcenterJacobian indicates centerJacobian() (§3.2.41), the determinant of the derivative of the mapping at the discretiza-
tion points of the grid. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.11 THEcellVolume

THEcellVolume indicates cellVolume() (§3.2.42), the area (in two dimensions) or volume (in three dimensions) of the grid
cells. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.12 THEfaceNormal

THEfaceNormal indicates faceNormal() (§3.2.43), the normals to the grid cell edges (in two dimensions) or faces (in three
dimensions), normalized to the length or area area of the corresponding edge or face. See also update(what,how) (§3.1.16)
and destroy(what) (§3.1.18).
3.6.13 THEcenterNormal

THEcenterNormal indicates centerNormal() (§3.2.44), the normals to constant parameter curves (in two dimensions) or
surfaces (in three dimensions) passing through the grid cell centers, normalized to the length or area of that part of the curve or
surface which lies inside the corresponding grid cell. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).
3.6.14 THEfaceArea

THEfaceArea indicates faceArea() (§3.2.45), the length (in two dimensions) or area (in three dimensions) of the grid cell
edges or faces. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.15 THEcenterArea

THEcenterArea indicates centerArea() (§3.2.46), the length (in two dimensions) or area (in three dimensions) of the grid cell
edges or faces. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.16 THEvertexBoundaryNormal

THEvertexBoundaryNormal indicates vertexBoundaryNormal (§3.2.47), the unit outward normals to the grid boundary at
the boundary vertices. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.17 THEcenterBoundaryNormal

THEcenterBoundaryNormal indicates centerBoundaryNormal (§3.2.48), the unit outward normals to the grid boundary
at centers of the grid boundary cell edges (in two dimensions) or faces (in three dimensions). See also update(what,how)
(§3.1.16) and destroy(what) (§3.1.18).

3 CLASSMAPPEDGRID 29

3.6.18 THEcenterBoundaryTangent

THEcenterBoundaryTangent indicates centerBoundaryTangent (§3.2.49), the unit tangent vectors to the grid boundary sur-
face at centers of the grid boundary cell edges (in two dimensions) or faces (in three dimensions). See also update(what,how)
(§3.1.16) and destroy(what) (§3.1.18).

3.6.19 THEminMaxEdgeLength

THEminMaxEdgeLength indicates minimumEdgeLength() (§3.2.28) and maximumEdgeLength() (§3.2.29), the minimum
and maximum grid cell edge lengths. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.20 THEboundingBox

THEboundingBox indicates boundingBox() (5§3.2.30), the coordinate bounds of a rectangular box that contains the vertices
of the grid. See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.21 THEusualSuspects

THEusualSuspects = GenericGrid:: THEusualSuspects (§2.5.2) | THEmask (§3.6.1) | THEvertex (§3.6.2) | THEcenter
(§3.6.3) | THEvertexDerivative (§3.6.5)

THEusualSuspects indicates some of the geometric data of a MappedGrid. The particular data indicated by THEusualSus-
pects may change from time to time. For this reason the use of THEusualSuspects is not recommended. THEusualSuspects
overloads GenericGrid:: THEusualSuspects (§2.5.2). See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.22 EVERYTHING

EVERYTHING = GenericGrid::EVERYTHING (§2.5.3) | THEmask (§3.6.1) | THEvertex (§3.6.2) | THEcenter (§3.6.3)
| THEcorner (§3.6.4) | THEvertexDerivative (§3.6.5) | THEcenterDerivative (§3.6.6) | THEinverseVertexDerivative
(§3.6.7) | THEinverseCenterDerivative (§3.6.8) | THEvertexJacobian (§3.6.9) | THEcenterJacobian (§3.6.10) | THEcel-
IVolume (§3.6.11) | THEfaceNormal (§3.6.12) | THEcenterNormal (§3.6.13) | THEfaceArea (§3.6.14) | THEcenterArea
(§3.6.15) | THEvertexBoundaryNormal (§3.6.16) | THEcenterBoundaryNormal (§3.6.17) | THEcenterBoundaryTangent
(§3.6.18) | THEminMaxEdgeLength (§3.6.19) | THEboundingBox (§3.6.20)

EVERYTHING indicates all of the geometric data associated with a MappedGrid. EVERYTHING overloads Generic-
Grid::EVERYTHING (§2.5.3). See also update(what,how) (§3.1.16) and destroy(what) (§3.1.18).

3.6.23 USEdifferenceApproximation

USEdifferenceApproximation indicates that computation of all geometric data except for vertex() (§3.2.33) should be done
using discrete approximations such as finite-difference approximations. By default, if a mapping (§3.2.50) is available and is
not of the base class “Mapping”, then discrete approximations are not used. Instead, the mapping and its derivative are used to
compute all of the geometric data. See also update(what,how) (§3.1.16).

3.6.24 COMPUTEgeometry

COMPUTEgeometry indicates that geometric data should be computed for each variable indicated, even if that data had
already been computed and marked valid. See also update(what,how) (§3.1.16).

3.6.25 COMPUTEgeometryAsNeeded

COMPUTEgeometryAsNeeded indicates that geometric data should be computed only for those variables indicated, which
either had not already been computed, were marked invalid, or for which new space needed to be allocated. See also up-
date(what,how) (§3.1.16).

3.6.26 COMPUTEtheUsual

COMPUTEtheUsual = GenericGrid::COMPUTEtheUsual (§2.5.5) | COMPUTEgeometryAsNeeded (§3.6.25)
COMPUTEtheUsual indicates that computation of geometric data should proceed in the “usual way.” Currently this means that
geometric data is computed only for those variables indicated, which had not already been computed. However, this may change
from time to time. COMPUTEtheUsual overloads GenericGrid::COMPUTEtheUsual (§2.5.5). See also update(what,how)
(§3.1.16).

4 CLASS GENERICGRIDCOLLECTION 30

3.6.27 ISdiscretizationPoint

ISdiscretizationPoint indicates that a point is a discretization point.

3.6.28 ISinterpolationPoint

ISinterpolationPoint indicates that a point is an interpolation point.

3.6.29 ISghostPoint

ISghostPoint indicates a point outside the boundary, whose nearest boundary point is either a discretization point or an inter-
polation point.

3.6.30 ISinteriorBoundaryPoint

ISinteriorBoundaryPoint indicates that a point is a boundary point that lies in the interior of another grid, and should therefore
not be used for the discretization of a boundary condition.

3.6.31 USESbackupRules

USESbackupRules indicates that a point uses backup rules for discretization or interpolation.

3.6.32 IShiddenByRefinement

IShiddenByRefinement indicates that a point is hidden by an overlying refinement grid.

3.6.33 ISreservedBit0

This constant should be used only by grid-generation programs.

3.6.34 ISreservedBitl

This constant should be used only by grid-generation programs.

3.6.35 ISreservedBit2

This constant should be used only by grid-generation programs.

3.6.36 GRIDnumberBits

This constant should be used only by grid-generation programs.

3.6.37 ISusedPoint
ISusedPoint = ISdiscretizationPoint (§3.6.27) | I1SinterpolationPoint (§3.6.28) | ISghostPoint (§3.6.29)

4 Class GenericGridCollection

Class GenericGridCollection is the base class for all Overture classes that contain collections of grids. It contains a list of
GenericGrids. Each of the grids in this list may be considered to belong to a “base grid,” which may have “refinement”
grids at various levels of refinement. There may be more than one base grid, in which case the collection of grids may
be partitioned into disjoint subsets of grids that belong to the various unrefined base grids. Class GenericGridCollection
contains a list of GenericGridCollections that may hold the subsets of grids that form this partition. It also contains a list of
GenericGridCollections that may hold the subsets of grids that have in common their level of refinement with respect to their
base grids. This list forms a partition of the collection of grids into disjoint subsets according to refinement level. Each base grid
or refinement may have more than one multigrid level. We call the finest multigrid level of any grid a “componenent grid,” and
the coarser multigrid levels of each component grid we call “multigrid coarsenings.” There may be more than one component
grid, in which case the collection of grids may be partitioned into disjoint subsets of grids that belong to the various component
grids. Class GenericGridCollection contains a list of GenericGridCollections that may hold the subsets of grids that form

4 CLASS GENERICGRIDCOLLECTION 31

this partition. It also contains a list of GenericGridCollections that may hold the subsets of grids that have in common their
level of multigrid coarsening with respect to their finest-level component grids. This list forms a partition of the collection of
grids into disjoint subsets according to multigrid level. To summarize, the collection of grids may be partitioned according
to base grid or refinement level, and these two partitions are dual to each other; similarly, the collection may be partitioned
according to component grid or multigrid level, and these two partitions also are dual to each other. Since the lists forming the
subsets in any of these four partitions are also GenericGridCollections, they may be further partitioned in exactly the same
way. For example, it is possible in this way to form a list of all the refinements of a particular base grid at a given multigrid
level.

4.1 Public member functions

4.1.1 GenericGridCollection(const Integer numberOfGrids_= 0)

Default constructor. If numberOfGrids_=0 (e.g., by default) then create a null GenericGridCollection. Otherwise, create a
GenericGridCollection with the given number of grids.

4.1.2 GenericGridCollection(const GenericGridCollection& x, const CopyType ct = DEEP)

Copy constructor. This does a deep copy by default. See also operator=(x) (§4.1.4) and reference(x) (§4.1.5).

4.1.3 virtual ~GenericGridCollection()

Destructor.

4.1.4 GenericGridCollection& operator=(const GenericGridCollection& x)

Assignment operator. This is also called a deep copy.

4.1.5 void reference(const GenericGridCollection& Xx)

Make a reference. This is also called a shallow copy. This GenericGridCollection shares the data of x.

4.1.6 virtual void breakReference()

Break a reference. If this GenericGridCollection shares data with any other GenericGridCollection, then this function
replaces it with a new copy that does not share data.

4.1.7 virtual void consistencyCheck() const

Check the consistency of this GenericGridCollection.

4.1.8 virtual Integer get(const GenericDataBase& dir, const aString& name)

Copy a GenericGridCollection from a file.

4.1.9 virtual Integer put(GenericDataBase& dir, const aString& name) const

Copy a GenericGridCollection into a file.

4.1.10 Integer update(const Integer what = THEusualSuspects,
const Integer how = COMPUTEtheUsual)

Update geometric data. The first argument (what) indicates which geometric data are to be updated. Any combination of
the constants THEbaseGrid (§4.6.1), THErefinementLevel (§4.6.2), THEcomponentGrid (§4.6.3), THEmultigridLevel
(84.6.4), NOTHING (54.6.5), THEusualSuspects (§4.6.6), THElIists (§4.6.7) and EVERYTHING (§4.6.8), as well as any of
the corresponding constants allowed for GenericGrid::update(what,how) (§2.1.10), may be bitwise ORed together to form
the first argument of update(), to indicate which geometric data should be updated. This function returns a value obtained by
bitwise ORing some of these constants, to indicate for which of the optional geometric data new array space was allocated.
In addition, the constant COMPUTEfailed (§4.6.11), may be bitwise ORed into the value returned by update() in order to

4 CLASS GENERICGRIDCOLLECTION 32

indicate that the computation of some geometric data failed. The second argument (how) indicates whether and how any com-
putation of geometric data should be done. Any combination of the constants COMPUTEnothing (§4.6.9), COMPUTEth-
eUsual (§4.6.10), as well as any of the corresponding constants allowed for GenericGrid::update(what,how) (§2.1.10), may
be bitwise ORed together to form the optional second argument of update(). The corresponding function update(what,how)
(§2.1.10) is called with the same arguments for each grid in the list grid (§4.4.1).

4.1.11 virtual Integer update(GenericGridCollection& x, const Integer what = THEusualSuspects, const Integer
how = COMPUTEtheUsual)

Update geometric data, sharing space with the optional geometric data of another grid (x). If space for any indicated optional
geometric data has not yet been allocated, or has the wrong dimensions, but x does contain the corresponding data, then the
data for this GenericGridCollection will share space with the corresponding data of x. Any geometric data that already exists
and has the correct dimensions is not forced to share space with the corresponding data of x. The corresponding function
update(x,what,how) (§2.1.11) is called with the same arguments for each grid in the list grid (§4.4.1). For the optional
arguments what and how, see the description of the function update(what,how) (§4.1.10).

4.1.12 void destroy(const Integer what = NOTHING)

Destroy the indicated optional geometric grid data. The argument (what) indicates which optional geometric data are to be
destroyed. Any combination of the constants THEbaseGrid (§4.6.1), THErefinementLevel (§4.6.2), THEcomponentGrid
(84.6.3), THEmultigridLevel (§4.6.4), NOTHING (§4.6.5), THEusualSuspects (§4.6.6), THElIists (§4.6.7) and EVERY-
THING (§4.6.8), as well as any of the corresponding constants allowed for GenericGrid::destroy(what) (§2.1.12), may be
bitwise ORed together to form the optional argument what. The corresponding function destroy(what) (§2.1.12) is called with
the same argument for each grid in the list grid (§4.4.1).

4.1.13 void geometryHasChanged(const Integer what = ~NOTHING)

Mark the geometric data out-of-date. Any combination of the constants THEbaseGrid (§4.6.1), THErefinementLevel
(84.6.2), THEcomponentGrid (§4.6.3), THEmultigridLevel (§4.6.4), NOTHING (§4.6.5), THEusualSuspects (§4.6.6),
THElists (§4.6.7) and EVERYTHING (§4.6.8), as well as any of the corresponding constants allowed for Generic-
Grid::geometryHasChanged(what) (§2.1.13), may be bitwise ORed together to form the first argument of geometry-
HasChanged(). By default, all geometric data of this GenericGridCollection and all derived classes is marked out-of-date.
The corresponding function geometryHasChanged(what) (§2.1.13) is called with the same argument for each grid in the list
grid (84.4.1). It is recommended that this function be called only from derived classes and grid-generation programs.

4.1.14 virtual Integer addRefinement(const Integer& level, const Integer k = 0)

Add a refinement grid to this collection. This refinement grid is marked as belonging to refinement level level. It is marked
as belonging to the same base grid as that of grid[k], which may be any sibling, parent, or other more remote ancestor. It is
required that level > 0. There must already exist grids marked as belonging to refinement level level — 1. This function returns
the index of the refinement grid.

4.1.15 virtual void deleteRefinement(const Integer& k)

Delete all multigrid levels of refinement grid k.

4.1.16 virtual void deleteRefinementLevels(const Integer level = 0)

Delete all grids in this collection marked as belonging to refinement levels greater than level. It is required that level > 0.

4.1.17 virtual void referenceRefinementLevels(GenericGridCollection& X, Integer level = INTEGER_MAX)

Make this collection contain exactly those grids from the collection x which are marked in x as belonging to refinement level
level or to any coarser refinent level. It is required that level > 0.

4 CLASS GENERICGRIDCOLLECTION 33

4.1.18 virtual Integer addMultigridCoarsening(const Integer& level, const Integer k = 0)

Add a multigrid coarsening of a grid to this collection. This coarsening is marked as belonging to multigrid level level. It
is marked as belonging to the same component grid as that of grid[k], which may be any finer multigrid level of the same
component grid. It is required that level > 0. There must already exist a multigrid coarsening of the component grid at
multigrid level level — 1. This function returns the index of the multigrid coarsening.

4.1.19 virtual void deleteMultigridCoarsening(const Integer& k)

Delete grid k,a multigrid coarsening, and all of its coarser multigrid levels.

4.1.20 virtual void deleteMultigridLevels(const Integer level = 0)

Delete all grids in this collection marked as belonging to multigrid levels greater than level. It is required that level > 0.

4.1.21 virtual void initialize(const Integer& numberOfGrids.)

Initialize the GenericGridCollection with the given number of grids. These grids have their gridNumbers, baseGridNumbers and
componentGridNumbers set to [0, ..., numberOfGrids_ — 1], and their refinementLevelNumbers and multigridLevelNumbers
set to zero.

4.1.22 Logical operator==(const GenericGridCollection& x) const

This comparison function returns Logical True (non-zero) if and only if x refers the same grid as xthis.

4.1.23 Logical operator!=(const GenericGridCollection& x) const

This comparison function returns LogicalTrue or (non-zero) if and only if x does not refer to the same grid as «this.

4.1.24 Integer getlndex(const GenericGrid& Xx) const

This function returns the index of grid x in xthis, or returns —1 if x is not in xthis.

4.2 Public Member functionsfor accessto data
4.2.1 const Integer& computedGeometry() const

This function returns a reference to a bit mask that indicates which geometrical data has been computed. This mask must be
reset to zero to invalidate the data when the geometry changes. It is recommended that this data be used only by derived classes
and grid-generation programs. See also geometryHasChanged(what) (§4.1.13).

4.2.2 const Integer& numberOfGrids() const

This function returns a reference to the number of grids in the list grid (§4.4.1).

4.2.3 const Integer& numberOfBaseGrids() const

This function returns a reference to the number of GenericGridCollections in the list baseGrid (§4.4.3).

4.2.4 const Integer& numberOfRefinementLevels() const

This function returns a reference to the number of GenericGridCollections in the list refinementLevel (§4.4.5).

4.2.5 const Integer& numberOfComponentGrids() const

This function returns a reference to the number of GenericGridCollections in the list multigridLevel (§4.4.9).

4.2.6 const Integer& numberOfMultigridLevels() const

This function returns a reference to the number of GenericGridCollections in the list multigridLevel (§4.4.9).

4 CLASS GENERICGRIDCOLLECTION 34

4.2.7 GenericGrid& operator[](const int& i)

Get a reference to the ith grid. If g is a GenericGridCollection, then g]¢] is a reference to the GenericGrid g.grid][s].

4.2.8 virtual aString getClassName() const

Get the class name of the most-derived class for this object.

4.2.9 GenericGridCollectionDatax operator—>()

Access the reference-counted data.

4.2.10 GenericGridCollectionData& operators()

Access the pointer to the reference-counted data.

4.3 Public member functions called only from derived classes

It is recommended that these functions be called only from derived classes.

4.3.1 void reference(GenericGridCollectionData& Xx)

Make a reference to an object of type GenericGridCollectionData. This GenericGridCollection uses x for its data. It is
recommended that this function be called only from derived classes.

4.3.2 void updateReferences(const Integer what = EVERYTHING)

Update references to the reference-counted data. It is recommended that this function be called only from derived classes.

4.3.3 virtual void setNumberOfGrids(const Integer& numberOfGrids_)

Add or delete grids to/from this collection until there are numberOfGrids_ grids. Any grids added are marked as belonging to
base grid zero, multigrid level zero and refinement level zero. The use of this function is not recommended if the collection is
intended to contain more than one base grid, refinement level, component grid or multigrid level. For example, if the collection
is intended to contain more than one refinement level, it is recommended that the functions addRefinement(level k) (§4.1.14)
and deleteRefinementLevels(level) (§4.1.16) be used instead.

4.4 Public data

4.4.1 ListOfGenericGrid grid

Length: numberOfGrids() (§4.2.2)

A list containing of all of the grids in the collection. The grids in this list are GenericGrids.
4.4.2 const IntegerArray gridNumber

Dimensions: (0:ny), where ny = numberOfGrids() — 1.

The index of the each GenericGrid in the list grid (§4.4.1).

443 ListOfGenericGridCollection baseGrid

baseGrid is a list of GenericGridCollections containing one base grid and all of its refinements, including all multigrid
coarsenings of these grids. This data may be updated as in the following example.

4.4.4 const IntegerArray baseGridNumber

Dimensions: (0:ny), where ny = numberOfGrids() — 1.
baseGridNumber holds the index of the base grid ancestor of each GenericGrid in the list grid (§4.4.1).

4 CLASS GENERICGRIDCOLLECTION 35

445 ListOfGenericGridCollection refinementLevel

refinementLevel is a list of GenericGridCollections containing GenericGrids that belong to the same refinement level. This
data may be updated as in the following example.

4.4.6 const IntegerArray refinementLevelNumber

Dimensions: (0:n), where ny = numberOfGrids() — 1.

refinementLevelNumber holds the index of the refinement level of each GenericGrid in the list grid (§4.4.1).

4.4.7 ListOfGenericGridCollection componentGrid

componentGrid is a list of GenericGridCollections containing one componenent grid and all of its multigrid coarsenings.
This data may be updated as in the following example.

4.4.8 const IntegerArray componentGridNumber

Dimensions: (0: ny), where ny = numberOfGrids() — 1.

componentGridNumber holds the index of the component grid of each GenericGrid in the list grid (§4.4.1).

4.4.9 ListOfGenericGridCollection multigridLevel

multigridLevel is a list of GenericGridCollections containing GenericGrids that belong to the same multigrid level. This
data may be updated as in the following example.

4.4.10 const IntegerArray multigridLevelNumber

Dimensions: (0:nq), where ny = numberOfGrids() — 1.
multigridLevelNumber holds the index of the multigrid level of each GenericGrid in the list grid (§4.4.1).

4.5 Public data used only by derived classes

It is recommended that these variables be used only by derived classes.

45.1 GenericGridCollectionDatax rcData

rcData is a pointer to the reference-counted data. It is recommended that this variable be used only by derived classes. See also
the member functions operator—>() (§4.2.9) and operatorx() (§4.2.10), which are provided for access to rcData.

452 Logical isCounted

isCounted is a flag that indicates whether the data pointed to by rcData (§4.5.1) is known to be reference-counted. It is
recommended that this variable be used only by derived classes.

4.6 Public constants

4.6.1 THEbaseGrid

THEDbaseGrid indicates baseGrid (§4.4.3), the list of GenericGridCollections containing those GenericGrids which are
descended from the same base grid. See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

4.6.2 THErefinementLevel

THErefinementLevel indicates refinementLevel (§4.4.5), the list of GenericGridCollections containing those GenericGrids
which belong to the same refinement level. See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

4.6.3 THEcomponentGrid

THEcomponentGrid indicates multigridLevel (§4.4.7), the list of GenericGridCollections containing those GenericGrids
which belong to the same component grid. See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

5 CLASSGRIDCOLLECTION 36

4.6.4 THEmultigridLevel

THEmultigridLevel indicates multigridLevel (§4.4.9), the list of GenericGridCollections containing those GenericGrids
which belong to the same multigrid level. See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

4.6.5 NOTHING

NOTHING = GenericGrid::NOTHING (§2.5.1) See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

4.6.6 THEusualSuspects

THEusualSuspects = GenericGrid:: THEusualSuspects (§2.5.2)

THEusualSuspects indicates some of the geometric data of a GenericGridCollection. The particular data indicated by
THEusualSuspects may change from time to time. For this reason the use of THEusualSuspects is not recommended. See
also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

4.6.7 THElists

THElists = THEbaseGrid (§4.6.1) | THErefinementLevel (§4.6.2) | THEcomponentGrid (§4.6.3) | THEmultigridLevel
(§4.6.4)

See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

4.6.8 EVERYTHING

EVERYTHING = GenericGrid::EVERYTHING (§2.5.3) | THEbaseGrid (§4.6.1) | THEmultigridLevel (§4.6.4) | THEre-
finementLevel (§4.6.2)

EVERYTHING indicates all of the geometric data associated with a GenericGridCollection. See also update(what,how)
(84.1.10) and destroy(what) (§4.1.12).

4.6.9 COMPUTEnNothing

COMPUTEnNothing = GenericGrid::COMPUTEnNothing (§2.5.4)

See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

4.6.10 COMPUTEtheUsual

COMPUTEtheUsual = GenericGrid::COMPUTEtheUsual (§2.5.5)

See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

46.11 COMPUTEfailed

COMPUTEfailed = GenericGrid::COMPUTEfailed (§2.5.6)
See also update(what,how) (§4.1.10) and destroy(what) (§4.1.12).

5 ClassGridCollection

Class GridCollection is the base class for all Overture classes that contain collections of MappedGrids. It is derived from
class GenericGridCollection.

5.1 Public member functions

5.1.1 GridCollection(const Integer numberOfDimensions_ = 0,
const Integer numberOfGrids_ = 0)

Default constructor. If numberOfDimensions_==0 (e.g., by default) then create a null GridCollection. Otherwise, create a
GridCollection with the given number of dimensions and number of grids.

5 CLASSGRIDCOLLECTION 37

5.1.2 GridCollection(const GridCollection& x, const CopyType ct = DEEP)
Copy constructor. This does a deep copy by default. See also operator=(x) (§5.1.4) and reference(x) (§5.1.5).

5.1.3 virtual ~GridCollection()

Destructor.

5.1.4 GridCollection& operator=(const GridCollection& x)

Assignment operator. This is also called a deep copy.

5.1.5 void reference(const GridCollection& x)

Make a reference. This is also called a shallow copy. This GridCollection shares the data of x.

5.1.6 virtual void breakReference()

Break a reference. If this MappedGrid shares data with any other GridCollection, then this function replaces it with a new
copy that does not share data.

5.1.7 void changeToAllVertexCentered()

Change the grid to be all vertex-centered.

5.1.8 void changeToAlICellCentered()

Change the grid to be all cell-centered.

5.1.9 virtual void consistencyCheck() const

Check the consistency of this GridCollection.

5.1.10 virtual Integer get(const GenericDataBase& dir, const aString& name)

Copy a GridCollection from a file.

5.1.11 virtual Integer put(GenericDataBase& dir, const aString& name) const

Copy a GridCollection into a file.

5.1.12 Integer update(const Integer what = THEusualSuspects,
const Integer how = COMPUTEtheUsual)

Update geometric data. The first argument (what) indicates which geometric data are to be updated. Any combination of
the constants THEusualSuspects (§5.6.21) and EVERYTHING (§5.6.22), as well as any of the corresponding constants
allowed for GenericGridCollection::update(what,how) (§4.1.10) or MappedGrid::update(what,how) (§3.1.16), may be
bitwise ORed together to form the first argument of update(), to indicate which geometric data should be updated. This func-
tion returns a value obtained by bitwise ORing some of these constants, to indicate for which of the optional geometric data
new array space was allocated. In addition, the constant COMPUTEfailed (§4.6.11), may be bitwise ORed into the value
returned by update() in order to indicate that the computation of some geometric data failed. The second argument (how)
indicates whether and how any computation of geometric data should be done. The constant COMPUTEtheUsual (§5.6.26),
as well as any of the corresponding constants allowed for GenericGridCollection::update(what,how) (§4.1.10) or Mapped-
Grid::update(what,how) (§3.1.16), may be bitwise ORed together to form the optional second argument of update(). The
corresponding function update(what,how) (§4.1.10) is called with the same arguments for the base class GenericGridCollec-
tion, and update(what,how) (§3.1.16) is called with the same arguments for each MappedGrid in the list grid (§5.4.4).

5 CLASSGRIDCOLLECTION 38

5.1.13 Integer update(GridCollection& x, const Integer what = THEusualSuspects, const Integer how = COMPUTEth-
eUsual)

Update geometric data, sharing space with the optional geometric data of another grid (x). If space for any indicated optional ge-
ometric data has not yet been allocated, or has the wrong dimensions, but x does contain the corresponding data, then the data for
this GridCollection will share space with the corresponding data of x. Any geometric data that already exists and has the cor-
rect dimensions is not forced to share space with the corresponding data of x. The corresponding function update(x,what,how)
(84.1.11) is called with the same arguments for the base class GenericGridCollection, and update(what,how) (§3.1.16) is
called with the same arguments for each MappedGrid in the list grid (§5.4.4). For the optional arguments what and how, see
the description of the function update(what,how) (§5.1.12).

5.1.14 virtual void destroy(const Integer what = NOTHING)

Destroy the indicated optional geometric grid data. The argument (what) indicates which optional geometric data are to be
destroyed. Any combination of the constants THEusualSuspects (§5.6.21) and EVERYTHING (§5.6.22), as well as any of
the corresponding constants allowed for GenericGridCollection::destroy(what) (§4.1.12) or MappedGrid::destroy(what)
(§3.1.18), may be bitwise ORed together to form the optional argument what. The corresponding function destroy(what)
(84.1.12) is called with the same argument for the base class GenericGridCollection, and destroy(what) (§3.1.18) is called
with the same argument for each grid in the list grid (§5.4.4).

5.1.15 virtual Integer addRefinement(const IntegerArray& range, const IntegerArray& factor) const Integer& level,
const Integer k = 0)

Add a refinement grid to this collection. This refinement grid is marked as belonging to refinement level level. It is marked as
having the same base grid as that of grid[k], which may be any sibling, parent, or other more remote ancestor. It is required
that level > 0. There must already exist grids marked as belonging to refinement level level — 1. The indexRange() (§3.2.3) of
the refinement is computed from range, which must be a subset of the index range of a refinement of the same base grid (the
refinement grid’s most remote ancestor), at the next-coarser level of refinement (the refinement level of any parent grid), that
would cover the entire base grid. The refinement factor factor is relative to any parent grid; any cell of any parent grid that is
covered by cells of the new refinement grid is subdivided in each direction k into factor(k) cells of the new refinement grid.
This function returns the index of the refinement grid.

5.1.16 Integer addRefinement(const IntegerArray& range, const Integer& factor) const Integer& level, const Integer
k=0)

Add a refinement grid to this collection. This function simply calls addRefinement() (§5.1.15) with factor replaced by an

IntegerArray of length three set to the scalar factor. This function returns the index of the refinement grid.

5.1.17 virtual void deleteRefinement(const Integer& k)

Delete all multigrid levels of refinement grid k.

5.1.18 virtual void deleteRefinementLevels(const Integer& level)

Delete all grids in this collection marked as belonging to refinement levels greater than level. It is required that level > 0.

5.1.19 void referenceRefinementLevels(GridCollection& X, Integer level = INTEGER_MAX)

Make this collection contain exactly those grids from the collection x which are marked in x as belonging to refinement level
level or to any coarser refinent level. It is required that level > 0.

5.1.20 virtual Integer addMultigridCoarsening(const IntegerArray& factor, const Integer& level, const Integer k = 0)

Add a multigrid coarsening of a grid to this collection. The multigrid coarsening factor in each index direction, relative to the
next-finer multigrid level, is given by factor. This coarsening is marked as belonging to multigrid level level. It is marked as
belonging to the same component grid as that of grid[k], which may be any finer multigrid level of the same component grid.
Itis required that level > 0. There must already exist a multigrid coarsening of the component grid at multigrid level level — 1.
This function returns the index of the multigrid coarsening.

5 CLASSGRIDCOLLECTION 39

5.1.21 Integer addMultigridCoarsening(const Integer& factor, const Integer& level, const Integer k = 0)

Add a multigrid coarsening of a grid to this collection. The multigrid coarsening factor relative to the next-finer multigrid level
is given by factor. This coarsening is marked as belonging to multigrid level level. It is marked as belonging to the same
component grid as that of grid[k], which may be any finer multigrid level of the same component grid. It is required that
level > 0. There must already exist a multigrid coarsening of the component grid at multigrid level level — 1. This function
returns the index of the multigrid coarsening.

5.1.22 virtual void deleteMultigridCoarsening(const Integer& k)

Delete grid k,a multigrid coarsening, and all of its coarser multigrid levels.

5.1.23 virtual void deleteMultigridLevels(const Integer level = 0)

Delete all grids in this collection marked as belonging to multigrid levels greater than level. It is required that level > 0.

5.1.24 virtual void initialize(const Integer& numberOfDimensions_, Integer& numberOfGrids.)

Initialize the GridCollection with the given number of grids. These grids have their gridNumbers, baseGridNumbers and
componentGridNumbers set to [0, . .., numberOfGrids_ — 1], and their refinementLevelNumbers and multigridLevelNumbers
set to zero.

5.2 Public Member functionsfor accessto data

5.2.1 const Integer& numberOfDimensions() const

This function returns a reference to the number of dimensions of the grids in the list grid (54.4.1).

5.2.2 virtual aString getClassName() const

Get the class name of the most-derived class for this object.

5.2.3 MappedGrid& operator[](const int& i) const
Get a reference to the ith grid. If g is a GridCollection, then g[i] is a reference to the MappedGrid g.grid[s].

5.2.4 GridCollectionDatax operator—>()

Access the reference-counted data.

5.2.5 GridCollectionData& operator:()

Access the pointer to the reference-counted data.

5.3 Public member functions called only from derived classes

It is recommended that these functions be called only from derived classes.

5.3.1 void reference(GridCollectionData& x)

Make a reference to an object of type GridCollectionData. This GridCollection uses x for its data. It is recommended that
this function be called only from derived classes.

5.3.2 void updateReferences(const Integer what = EVERYTHING)

Update references to the reference-counted data. It is recommended that this function be called only from derived classes.

5.3.3 virtual void setNumberOfGrids(const Integer& numberOfGrids_)

Set the number of grids, and add or delete grids to/from this collection until there are numberOfGrids_ grids. See also
setNumberOfDimensionsAndGrids(numberOfDimensions_, numberOfGrids.) (§5.3.5).

5 CLASSGRIDCOLLECTION 40

5.3.4 virtual void setNumberOfDimensions(const Integer& numberOfDimensions_)

Set the number of dimensions. This is valid only if the collection does not contain MappedGrids with a different number of
dimensions. See also setNumberOfDimensionsAndGrids(numberOfDimensions_, numberOfGrids_) (§5.3.5).

5.3.5 virtual void setNumberOfDimensionsAndGrids(const Integer& numberOfDimensios_, const Integer& num-
berOfGrids.)

Set the number of dimensions of the grids, and add or delete grids to/from this collection until there are numberOfGrids_
grids. Any grids added are marked as belonging to base grid zero, multigrid level zero and refinement level zero. The use of
this function is not recommended if the collection is intended to contain more than one base grid, multigrid level or refinement
level. For example, if the collection is intended to contain more than one refinement level, it is recommended that the functions
addRefinement(range,factor,level k) (§5.1.15) and deleteRefinementLevels(level) (§5.1.18) be used instead.

5.4 Publicdata
5.4.1 const RealArray boundingBox

Dimensions: (0: 2)
boundingBox holds coordinate bounds for the grids in the list grid (§5.4.4). It is computed as the min/max of Mapped-
Grid::boundingBox() (§3.2.30) from each grid in the collection.

5.4.2 const IntegerArray refinementFactor

Dimensions: (0: 2, 0: numberOfGrids() — 1)
refinementFactor holds the ratio, for each grid, in each index direction, of the size of cells of the corresponding unrefined base
grid (at the same multigrid level) to the size of cells of that grid.

5.4.3 const IntegerArray multigridCoarseningFactor

Dimensions: (0: 2, 0: numberOfGrids() — 1)
multigridCoarseningFactor holds the ratio, for each grid, in each index direction, of the size of cells of that grid to the size of
cells of the finest multigrid level of the same component grid.

5.4.4 ListOfMappedGrid grid

Length: numberOfGrids() (§4.2.2)
A list containing of all of the grids in the collection. The grids in this list are MappedGrids. grid overloads GenericGridCol-
lection::grid (§4.4.1), which contains the same MappedGrids (referred to in the latter case as GenericGrids).

5.45 ListOfGridCollection baseGrid

baseGrid is a list of GridCollections containing one base grid and all of its refinements, including all multigrid coarsenings
of these grids. baseGrid overloads GenericGridCollection::baseGrid (§4.4.3), which contains the same GridCollections
(referred to in the latter case as GenericGridCollections). This data may be updated as in the following example.

5.4.6 ListOfGridCollection refinementLevel

refinementLevel is a list of GridCollections containing those MappedGrids which belong to the same refinement level.
refinementLevel overloads GenericGridCollection::refinementLevel (§4.4.5), whose GenericGridCollections contain the
same grids as the GridCollections of refinementLevel. This data may be updated as in the following example.

5.4.7 ListOfGridCollection componentGrid

componentGrid is a list of GridCollections containing one componenent grid and all of its multigrid coarsenings. compo-
nentGrid overloads GenericGridCollection::componentGrid (§4.4.7), which contains the same GridCollections (referred
to in the latter case as GenericGridCollections). This data may be updated as in the following example.

5 CLASSGRIDCOLLECTION 41

5.4.8 ListOfGridCollection multigridLevel

multigridLevel is a list of GridCollections containing those MappedGrids which belong to the same multigrid level. multi-
gridLevel overloads GenericGridCollection::multigridLevel (§4.4.9), whose GenericGridCollections contain the same
grids as the GridCollections of multigridLevel (referred to in the latter case as GenericGrids). This data may be updated as
in the following example.

5.4.9 AMR_RefinementLevellnfox refinementLevellnfo

This is used for adaptive mesh refinement. Dan Quinlan++ has documentation for it.

5.5 Public data used only by derived classes

It is recommended that these variables be used only by derived classes.

5.5.1 GridCollectionDatax rcData

rcData is a pointer to the reference-counted data. It is recommended that this variable be used only by derived classes. See also
the member functions operator—>() (§5.2.4) and operatorx() (§5.2.5), which are provided for access to rcData.

5.5.2 Logical isCounted

isCounted is a flag that indicates whether the data pointed to by rcData (§5.5.1) is known to be reference-counted. It is
recommended that this variable be used only by derived classes.

5.6 Public constants

Class GridCollection has all of the same constants defined as classes MappedGrid and GenericGridCollection. These are
listed here for the sake of completeness.

5.6.1 THEmask

THEmask = MappedGrid:: THEmask (§3.6.1)

5.6.2 THEvertex
THEvertex = MappedGrid:: THEvertex (§3.6.2)

5.6.3 THEcenter
THEcenter = MappedGrid:: THEcenter (§3.6.3)

5.6.4 THEcorner
THEcorner = MappedGrid:: THEcorner (§3.6.4)

5.6.5 THEvertexDerivative
THEvertexDerivative = MappedGrid:: THEvertexDerivative (§3.6.5)

5.6.6 THEcenterDerivative
THEcenterDerivative = MappedGrid:: THEcenterDerivative (§3.6.6)

5.6.7 THEinverseVertexDerivative

THEinverseVertexDerivative = MappedGrid:: THEinverseVertexDerivative (§3.6.7)

5 CLASSGRIDCOLLECTION 42

5.6.8 THEinverseCenterDerivative

THEinverseCenterDerivative = MappedGrid:: THEinverseCenterDerivative (§3.6.8)

5.6.9 THEvertexJacobian
THEvertexJacobian = MappedGrid:: THEvertexJacobian (§3.6.9)

5.6.10 THEcenterJacobian
THEcenterJacobian = MappedGrid:: THEcenterJacobian (§3.6.10)

5.6.11 THEcellVolume
THEcellVolume = MappedGrid:: THEcellVolume (§3.6.11)

5.6.12 THEfaceNormal
THEfaceNormal = MappedGrid:: THEfaceNormal (§3.6.12)

5.6.13 THEcenterNormal
THEcenterNormal = MappedGrid:: THEcenterNormal (§3.6.13)

5.6.14 THEfaceArea
THEfaceArea = MappedGrid:: THEfaceArea (§3.6.14)

5.6.15 THEcenterArea
THEcenterArea = MappedGrid:: THEcenterArea (§3.6.15)

5.6.16 THEvertexBoundaryNormal
THEvertexBoundaryNormal = MappedGrid:: THEvertexBoundaryNormal (§3.6.16)

5.6.17 THEcenterBoundaryNormal
THEcenterBoundaryNormal = MappedGrid:: THEcenterBoundaryNormal (§3.6.17)

5.6.18 THEcenterBoundaryTangent
THEcenterBoundaryTangent = MappedGrid:: THEcenterBoundaryTangent (§3.6.18)

5.6.19 THEminMaxEdgelLength
THEminMaxEdgeLength = MappedGrid:: THEminMaxEdgeLength (§3.6.19)

5.6.20 THEboundingBox
THEboundingBox = MappedGrid:: THEboundingBox (§3.6.20)

5.6.21 THEusualSuspects

THEusualSuspects = GenericGridCollection:: THEusualSuspects (§4.6.6) | MappedGrid:: THEusualSuspects (§3.6.21)
THEusualSuspects indicates some of the geometric data of a GridCollection. The particular data indicated by THEusu-
alSuspects may change from time to time. For this reason the use of THEusualSuspects is not recommended. See also
update(what,how) (§5.1.12) and destroy(what) (§5.1.14).

5 CLASSGRIDCOLLECTION 43

5.6.22 EVERYTHING

EVERYTHING = GenericGridCollection::EVERYTHING (§4.6.8) | MappedGrid::EVERYTHING (§3.6.22)
EVERYTHING indicates all of the geometric data associated with a GridCollection. (overloaded) See also up-
date(what,how) (§5.1.12) and destroy(what) (§5.1.14).

5.6.23 USEdifferenceApproximation

USEdifferenceApproximation = MappedGrid::USEdifferenceApproximation (§3.6.23)

See also update(what,how) (§5.1.12) and destroy(what) (§5.1.14).

5.6.24 COMPUTEgeometry

COMPUTEgeometry = MappedGrid::COMPUTEgeometry (§3.6.24)

See also update(what,how) (§5.1.12) and destroy(what) (§5.1.14).

5.6.25 COMPUTEgeometryAsNeeded

COMPUTEgeometryAsNeeded = MappedGrid::COMPUTEgeometryAsNeeded (§3.6.25)

See also update(what,how) (§5.1.12) and destroy(what) (§5.1.14).

5.6.26 COMPUTEtheUsual

COMPUTEtheUsual = GenericGridCollection::COMPUTEtheUsual (§4.6.10) | MappedGrid::COMPUTEtheUsual
(§3.6.26)

See also update(what,how) (§5.1.12) and destroy(what) (§5.1.14).

5.6.27 ISdiscretizationPoint

ISdiscretizationPoint = MappedGrid::I1SdiscretizationPoint (§3.6.27)

5.6.28 ISinterpolationPoint
ISinterpolationPoint = MappedGrid::1SinterpolationPoint (§3.6.28)

5.6.29 ISghostPoint
ISghostPoint = MappedGrid::1SghostPoint (§3.6.29)

5.6.30 ISinteriorBoundaryPoint
ISinteriorBoundaryPoint = MappedGrid::ISinteriorBoundaryPoint (§3.6.30)

5.6.31 USESbackupRules
USESbackupRules = MappedGrid::USESbackupRules (§3.6.31)

5.6.32 IShiddenByRefinement
IShiddenByRefinement = MappedGrid::1ShiddenByRefinement (§3.6.32)

5.6.33 ISreservedBit0
ISreservedBit0 = MappedGrid::1SreservedBit0 (§3.6.33)

5.6.34 ISreservedBitl
ISreservedBitl = MappedGrid::1SreservedBitl (§3.6.34)

6 CLASSCOMPOSITEGRID 44

5.6.35 ISreservedBit2
ISreservedBit2 = MappedGrid::1SreservedBit2 (§3.6.35)

5.6.36 GRIDnumberBits
GRIDnumberBits = MappedGrid::GRIDnumberBits (§3.6.36)

5.6.37 ISusedPoint
ISusedPoint = MappedGrid::1SusedPoint (§3.6.37)

6 ClassCompositeGrid

Class CompositeGrid is used for a composite overlapping grid, which is a collection of MappedGrids and a description of
how function values defined on these grids are related through interpolation between grids in their regions of overlap. Class
CompositeGrid is derived from class GridCollection.

6.1 Public member functions

6.1.1 CompositeGrid(const Integer numberOfDimensions._ = 0,
const Integer numberOfComponentGrids_ = 0)

Default constructor. If nhumberOfDimensions ==0 (e.g., by default) then create a null CompositeGrid. Otherwise create a
CompositeGrid with the given number of dimensions and number of component grids.

6.1.2 CompositeGrid(const CompositeGrid& X, const CopyType ct = DEEP)

Copy constructor. This does a deep copy by default. See also operator=(x) (§6.1.4) and reference(x) (§6.1.5).

6.1.3 virtual ~CompositeGrid()

Destructor.

6.1.4 CompositeGrid& operator=(const CompositeGrid& x)

Assignment operator. This is also called a deep copy.

6.1.5 void reference(const CompositeGrid& x)

Make a reference. This is also called a shallow copy. This CompositeGrid shares the data of x.

6.1.6 virtual void breakReference()

Break a reference. If this CompositeGrid shares data with any other CompositeGrid, then this function replaces it with a new
copy that does not share data.

6.1.7 void changeToAllVertexCentered()
Change the MappedGrids in this CompositeGrid to be all vertex-centered.

6.1.8 void changeToAlICellCentered()
Change the MappedGrids in this CompositeGrid to be all cell-centered.

6.1.9 virtual void consistencyCheck() const

Check the consistency of this CompositeGrid.

6 CLASSCOMPOSITEGRID 45
6.1.10 virtual Integer get(const GenericDataBase& dir, const aString& name)
Copy a CompositeGrid from a file.

6.1.11 virtual Integer put(GenericDataBase& dir, const aString& name) const

Copy a CompositeGrid into a file.

6.1.12 Integer update(const Integer what
const Integer how = COMPUTEtheUsual)

THEusualSuspects,

Update geometric data. The first argument (what) indicates which geometric data are to be updated. Any combi-
nation of the constants THEinterpolationCoordinates (§6.7.1), THEinterpoleeGrid (§6.7.2), THEinterpoleeLocation
(86.7.3), THEIinterpolationPoint (§6.7.4), THEinterpolationCondition (§6.7.5), THEinverseMap (§6.7.6), THEusualSus-
pects (§6.7.7) and EVERYTHING (§6.7.8), as well as any of the corresponding constants allowed for GenericGridCollec-
tion::update(what,how) (§4.1.10), may be bitwise ORed together to form the first argument of update(), to indicate which
geometric data should be updated. This function returns a value obtained by bitwise ORing some of these constants, to in-
dicate for which of the optional geometric data new array space was allocated. In addition, the constant COMPUTEfailed
(84.6.11), may be bitwise ORed into the value returned by update() in order to indicate that the computation of some geomet-
ric data failed. The second argument (how) indicates whether and how any computation of geometric data should be done.
The constant COMPUTEtheUsual (§6.7.9), as well as any of the corresponding constants allowed for GenericGridCollec-
tion::update(what,how) (§4.1.10), may be bitwise ORed together to form the optional second argument of update(). The
corresponding function update(what,how) (§5.1.12) is called with the same arguments for the base class GridCollection.

6.1.13 Integer update(CompositeGrid& X, const Integer what = THEusualSuspects, const Integer how = COM-
PUTEtheUsual)

Update geometric data, sharing space with the optional geometric data of another grid (x). If space for any indicated optional
geometric data has not yet been allocated, or has the wrong dimensions, but x does contain the corresponding data, then
the data for this CompositeGrid will share space with the corresponding data of x. Any geometric data that already exists
and has the correct dimensions is not forced to share space with the corresponding data of x. The corresponding function
update(x,what,how) (§5.1.13) is called with the same arguments for the base class GenericGridCollection. For the optional
arguments what and how, see the description of the function update(what,how) (§6.1.12).

6.1.14 virtual void destroy(const Integer what = NOTHING)

Destroy the indicated optional geometric grid data. The argument (what) indicates which optional geometric data are to be de-
stroyed. Any combination of the constants THEinterpolationCoordinates (§6.7.1), THEinterpoleeGrid (§6.7.2), THEinter-
poleeLocation (§6.7.3), THEinterpolationPoint (§6.7.4), THEinterpolationCondition (§6.7.5), THEinverseMap (§6.7.6),
THEusualSuspects (§6.7.7) and EVERYTHING (§6.7.8), as well as any of the corresponding constants allowed for Generic-
GridCollection::destroy(what) (§4.1.12) may be bitwise ORed together to form the optional argument what. The correspond-
ing function destroy(what) (§5.1.14) is called with the same argument for the base class GridCollection.

6.1.15 virtual Integer addRefinement(const IntegerArray& range, const IntegerArray& factor, const Integer& level,
const Integer k = 0)

Add a refinement grid to this collection. This refinement grid is marked as belonging to refinement level level. It is marked as
having the same base grid as that of grid[k], which may be any sibling, parent, or other more remote ancestor. It is required
that level > 0. There must already exist grids marked as belonging to refinement level level — 1. The indexRange() (§3.2.3) of
the refinement is computed from range, which must be a subset of the index range of a refinement of the same base grid (the
refinement grid’s most remote ancestor), at the next-coarser level of refinement (the refinement level of any parent grid), that
would cover the entire base grid. The refinement factor factor is relative to any parent grid; any cell of any parent grid that is
covered by cells of the new refinement grid is subdivided in each direction & into factor(k) cells of the new refinement grid.
This function returns the index of the refinement grid.

6 CLASSCOMPOSITEGRID 46

6.1.16 Integer addRefinement(const IntegerArray& range, const Integer& factor, const Integer& level, const Integer
k=0)

Add a refinement grid to this collection. This function simply calls addRefinement() (§6.1.15) with factor replaced by an
IntegerArray of length three set to the scalar factor. This function returns the index of the refinement grid.
6.1.17 virtual void deleteRefinement(const Integer& k)

Delete all multigrid levels of refinement grid k.

6.1.18 virtual void deleteRefinementLevels(const Integer& level)

Delete all grids in this collection marked as belonging to refinement levels greater than level. It is required that level > 0.

6.1.19 void referenceRefinementLevels(CompositeGrid& X, Integer level = INTEGER_MAX)

Make this collection contain exactly those grids from the collection x which are marked in x as belonging to refinement level
level or to any coarser refinent level. It is required that level > 0.

6.1.20 virtual Integer addMultigridCoarsening(const IntegerArray& factor, const Integer& level, const Integer k = 0)

Add a multigrid coarsening of a grid to this collection. The multigrid coarsening factor in each index direction, relative to the
next-finer multigrid level, is given by factor. This coarsening is marked as belonging to multigrid level level. It is marked as
belonging to the same component grid as that of grid[k], which may be any finer multigrid level of the same component grid.
It is required that level > 0. There must already exist a multigrid coarsening of the component grid at multigrid level level — 1.
This function returns the index of the multigrid coarsening.

6.1.21 Integer addMultigridCoarsening(const Integer& factor, const Integer& level, const Integer k = 0)

Add a multigrid coarsening of a grid to this collection. The multigrid coarsening factor relative to the next-finer multigrid level
is given by factor. This coarsening is marked as belonging to multigrid level level. It is marked as belonging to the same
component grid as that of grid[k], which may be any finer multigrid level of the same component grid. It is required that
level > 0. There must already exist a multigrid coarsening of the component grid at multigrid level level — 1. This function
returns the index of the multigrid coarsening.

6.1.22 void makeCompleteMultigridLevels()

Add multigrid coarsenings of component grids as needed in order to complete the multigrid levels, so that each component
grid, including any and all refinement grids, has at least numberOfCompleteMultigridLevels() multigrid levels. There should
already exist at least two multigrid levels of each unrefined component grid. Otherwise, any multigrid levels added will use
default values for multigrid parameters, which may be inappropriate. Any multigrid levels added to unrefined component
grids that already have at least one but fewer than numberOfCompleteMultigridLevels() multigrid levels take their multigrid
parameters from the next-finer multigrid level of the same component grid. Any multigrid levels added to refinement grids take
their multigrid parameters from the same multigrid level of the corresponding unrefined component grid.

6.1.23 virtual void deleteMultigridCoarsening(const Integer& k)

Delete grid k,a multigrid coarsening, and all of its coarser multigrid levels.

6.1.24 virtual void deleteMultigridLevels(const Integer level = 0)
Delete all grids in this collection marked as belonging to multigrid levels greater than level. It is required that level > 0.
6.1.25 void getinterpolationStencil(const Integer& k1, const IntegerArray& k2, const RealArray& r, IntegerAr-

ray& interpolationStencil,
const LogicalArray& useBackupRules)

g (INPUT) The unrefined grid corresponding to grid k2.
k1 (INPUT) The index of the grid containing the interpolation points.

6 CLASSCOMPOSITEGRID 47

k2 (INPUT) The index of the grid containing the interpolee points.

r (INPUT) Dimensions: (N,0:ny)
The interpolation coordinates of the interpolation points. The range of points NV for which the boundary is adjusted is
determined by the first dimension of r. The first dimension of interpolationStencil and useBackupRules should be the
same as the first the dimension of r. The second dimension of r and the third dimension of interpolationStencil should
have n; > numberOfDimensions() — 1.

interpolationStencil (OUTPUT) Dimensions: (N, 0:2,0: n;)
The ranges of indices of interpolee points on grid k2.

useBackupRules (INPUT) Dimensions: (V)
An array of flags to indicate which points use backup interpolation rules.

This function computes the index bounds on stencils of points used for interpolation. If grid k1 is a refinement grid, then the
interpolation stencil may contain points from more then one component grid. In particular, it may contain points from grid k2
and/or any of its sibling component grids (refinements of the same base grid at the same refinement level). For this case, it is
necessary to call the variant of getInterpolationStencil() which takes the base grid as an argument.

6.2 Public Member functionsfor accessto data

6.2.1 Integer& numberOfCompleteMultigridLevels()

This function returns a reference to the number of complete multigrid levels, the number of multigrid levels at which a complete
set of component grids exists. Interpolation is in general possible on complete multigrid levels.

6.2.2 Real& epsilon()

This function returns a reference to the tolerance used in computing interpolation stencils.

6.2.3 Logical& interpolationIsAlIExplicit()

This function returns a reference to a flag that indicates whether all interpolation is guaranteed to be explicit. This flag is always
recomputed by the function update(what,how) (§6.1.12).

6.2.4 Logical& interpolationlsAllimplicit()

This function returns a reference to a flag that indicates whether all interpolation is allowed to be implicit. This flag is always
recomputed by the function update(what,how) (§6.1.12).

6.2.5 virtual aString getClassName() const

Get the class name of the most-derived class for this object.

6.2.6 CompositeGridDatax operator—>()
Access the reference-counted data.
6.2.7 CompositeGridData& operator:()
const CompositeGridData& operators() const

Access the pointer to the reference-counted data.

6.3 Public member functionscalled only from derived classes

It is recommended that these functions be called only from derived classes.

6.3.1 void reference(CompositeGridData& Xx)

Make a reference to an object of type CompositeGridData. This CompositeGrid uses x for its data. It is recommended that
this function be called only from derived classes.

6 CLASSCOMPOSITEGRID 48

6.3.2 void updateReferences(const Integer what = EVERYTHING)

Update references to the reference-counted data. It is recommended that this function be called only from derived classes.

6.3.3 virtual void setNumberOfGrids(const Integer& numberOfGrids_)

Set the number of grids, and add or delete grids to/from this collection until there are numberOfGrids_ grids. See also set-
NumberOfDimensionsAndGrids(numberOfDimensions_, numberOfGrids_) (§6.3.5). It is recommended that this function
be called only from derived classes.

6.3.4 virtual void setNumberOfDimensions(const Integer& numberOfDimensions_)

Set the number of dimensions. This is valid only if the collection does not contain MappedGrids with a different number of
dimensions. See also setNumberOfDimensionsAndGrids(numberOfDimensions_, numberOfGrids_) (§6.3.5). It is recom-
mended that this function be called only from derived classes.

6.3.5 virtual void setNumberOfDimensionsAndGrids(const Integer& numberOfDimensios_, const Integer& num-
berOfGrids.)

Set the number of dimensions of the grids, and add or delete grids to/from this collection until there are numberOfGrids_
grids. Any grids added are marked as belonging to base grid zero, multigrid level zero and refinement level zero. The use of
this function is not recommended if the collection is intended to contain more than one base grid, multigrid level or refine-
ment level. For example, if the collection is intended to contain more than one refinement level, it is recommended that the
functions addRefinement(range,factor,level k) (§6.1.15) and deleteRefinementLevels(level) (§6.1.18) be used instead. It is
recommended that this function be called only from derived classes.

6.4 Publicdata

6.4.1 IntegerArray numberOfinterpolationPoints

Dimensions: (0: 2, 0: numberOfGrids() — 1)
The number of interpolation points on each component grid.

6.4.2 IntegerArray numberOfinterpoleePoints

Dimensions: (0:2,0: numberOfGrids() — 1)
The number of interpolee stencil points on each component grid, in stencils that contain points from more than one interpolee
grid.

6.4.3 LogicalArray interpolationlsimplicit

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids()
0: numberOfMultigridLevels() — 1)
The type of interpolation (to-grid, from-grid, multigrid-level).

|
-

6.4.4 LogicalArray backuplnterpolationlsimplicit

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids()
0: numberOfMultigridLevels() — 1)
The type of interpolation (to-grid, from-grid, multigrid-level) when using backup interpolation rules.

|
-

6.4.5 IntegerArray interpolationWidth

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids()
0: numberOfMultigridLevels() — 1)
The width of the interpolation stencil (direction, to-grid, from-grid, multigrid-level).

|
=

6 CLASSCOMPOSITEGRID 49

6.4.6 IntegerArray backuplnterpolationWidth

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1,
0: numberOfMultigridLevels() — 1)
The width of the interpolation stencil (direction, to-grid, from-grid, multigrid-level) when using backup interpolation rules.

6.4.7 RealArray interpolationOverlap

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1,
0: numberOfMultigridLevels() — 1)
The minimum overlap for interpolation (direction, to-grid, from-grid, multigrid-level).

6.4.8 RealArray backuplnterpolationOverlap

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1,
0: numberOfMultigridLevels() — 1)
The minimum overlap for interpolation (direction, to-grid, from-grid, multigrid-level) when using backup interpolation rules.

6.4.9 RealArray interpolationConditionLimit

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1,
0: numberOfMultigridLevels() — 1)
The maximum interpolation condition number allowed for interpolation (to-grid, from-grid, multigrid-level).

6.4.10 RealArray backuplnterpolationConditionLimit

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1,
0: numberOfMultigridLevels() — 1)

The maximum interpolation condition number allowed for interpolation (to-grid, from-grid, multigrid-level) when using
backup interpolation rules.

6.4.11 LogicalArray interpolationPreference

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1,
0: numberOfMultigridLevels() — 1)

A list of the indices of component grids from which each component grid may interpolate (list, to-grid, multigrid-level), in
increasing order of preference. Discretization must be included in this list, and is indicated by the component-grid index
“to-grid.” The list is terminated by —1 if there are fewer than numberOfComponentGrids() grids in the list.

6.4.12 LogicalArray maylnterpolate

Dimensions: (0: numberOfComponentGrids()—1, 0: numberOfComponentGrids()—1, 0: numberOfMultigridLevels() —
1)
Flags indicating which component grids may interpolate from each other (to-grid, from-grid, multigrid-level).

6.4.13 LogicalArray mayBackuplinterpolate

Dimensions: (0:2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1,
0: numberOfMultigridLevels() — 1)

Flags indicating which grids may interpolate from each other (to-grid, from-grid, multigrid-level) when using backup
interpolation rules.

6.4.14 LogicalArray mayCutHoles

Dimensions: (0: 2, 0: numberOfComponentGrids() — 1, 0: numberOfComponentGrids() — 1)

Flags indicating which component grids may cut holes in each other (cutting-grid, cut-grid, multigrid-level), where the boundary
of one grid intersects the interior of another grid and that boundary is labelled as a domain boundary. Normally, all sides of
grids labelled as domain boundaries are used to cut holes in all other grids.

6 CLASSCOMPOSITEGRID 50

6.4.15 LogicalArray multigridCoarseningRatio

Dimensions: (0: 2, 0: numberOfComponentGrids() — 1, 0: numberOfMultigridLevels() — 1)
multigridCoarseningRatio holds the ratio in each index direction, for each component grid, of the size of cells of that grid to
the size of cells of the next-finer multigrid level of the same component grid.

6.4.16 LogicalArray multigridProlongationWidth

Dimensions: (0: 2, 0: numberOfComponentGrids() — 1, 0: numberOfMultigridLevels() — 1)
multigridProlongationWidth holds the stencil width in each index direction, for each component grid for the multigrid pro-
longation operator used to transfer data to the next-finer multigrid level of the same component grid. For the finest multigrid
level (level zero), this parameter has no meaning.

6.4.17 LogicalArray multigridRestrictionWidth

Dimensions: (0: 2, 0: numberOfComponentGrids() — 1, 0: numberOfMultigridLevels() — 1)

multigridRestrictionWidth holds the stencil width in each index direction, for each component grid for the multigrid restric-
tion operator used to transfer data to the next-coarser multigrid level of the same component grid. For the coarsest multigrid
level, this parameter has no meaning.

6.4.18 ListOfRealArray interpolationCoordinates

Length: numberOfGrids() (§4.2.2)
Dimensions of interpolationCoordinates[k]: (0: numberOfinterpolationPoints(k) — 1, 0: numberOfDimensions() — 1)
interpolationCoordinates holds the coordinates of each interpolation point in the parameter space of its interpolee grid.

6.4.19 ListOfIintegerArray interpoleeGrid

Length: numberOfGrids() (§4.2.2)

Dimensions of interpoleeGrid[K]: (0: numberOflinterpolationPoints(k) — 1)

interpoleeGrid holds the component-grid number of the interpolee grid of each interpolation point. If
the interpolation stencil for interpolation point j contains points from more than one interpolee grid, then
the expression interpoleeGrid[k](j)&CompositeGrid: : ISgivenByInterpoleePoint is non-zero, and the expression
interpoleeGrid[k](j)&CompositeGrid: : GRIDnumberBits gives the nominal interpolee grid number. In that case, the in-
terpolation coordinates should be interpreted in the context of the nominal interpolee grid. It may happen that the interpolation
coordinates lie outside the interval [0,1]. This is not an error, but indicates only that the interpolation point lies outside the
nominal interpolee grid even though it lies within the stencil of interpolee points on their various respective grids. For each
interpolation stencil that contain points from more than one interpolee grid, the interpolee component-grid number of each
point in the interpolation stencil is stored in interpoleePoint[k] (§6.4.21).

6.4.20 IntegerArray interpoleeGridRange

Dimensions: (0: numberOfComponentGrids(), 0: numberOfComponentGrids() — 1, 0: numberOfMultigridLevels() — 1)
The starting index within interpoleeGrid[£], where grid & is component grid k- at multigrid level [, for points interpolated from
component grid k; is interpoleeGridRange(k1, k2, 1), and the ending index is interpoleeGridRange(k; + 1, ko, 1) — 1. For all
indices ¢ within this range, interpoleeGrid|[k](i) = k2. These index ranges do not include the indices of any points whose in-
terpolation stencils contain interpolee points from more than one grid. However, as these are always the last interpolation points
listed, it is not hard to see that the starting index of such points is interpoleeGridRange(numberOfComponentGrids, k2, {),
and the ending index is numberOfinterpolationPoints(ks) — 1.

6.4.21 ListOfIntegerArray interpoleePoint

Length: numberOfGrids() (§4.2.2)

Dimensions of interpoleePoint[k]: (0: numberOfinterpoleePoints(k) — 1)

interpoleePoint holds the component-grid number of the interpolee grid of each interpolee point in those interpolation stencils
which contain points from more than one interpolee grid. These component-grid numbers are listed in order of increasing i1,
then increasing 72, and then increasing i3, where (i1, 42, ¢3) are the indices of the interpolee points in their stencil, and finally,
in the order that the multiple-interpolee-grid interpolation stencils are encountered in interpoleeGrid[k] (§6.4.19).

6 CLASSCOMPOSITEGRID 51

6.4.22 ListOfIntegerArray interpoleelLocation

Length: numberOfGrids() (§4.2.2)

Dimensions of interpoleeLocation[k]: (0: numberOfinterpolationPoints(k) — 1, 0: numberOfDimensions() — 1)
interpoleeLocation holds the indices (in the interpolee grid) of the lower-left corner of the interpolation stencil for each
interpolation point.

6.4.23 ListOfIntegerArray interpolationPoint

Length: numberOfGrids() (§4.2.2)
Dimensions of interpolationPoint[k]: (0: numberOfinterpolationPoints(k) — 1, 0: numberOfDimensions() — 1)
interpolationPoint holds the indices (in the grid of the interpolation point) of each interpolation point.

6.4.24 ListOfRealArray interpolationCondition
Length: numberOfGrids() (§4.2.2)

Dimensions of interpolationCondition[k]: (0: numberOfinterpolationPoints(k) — 1)
interpolationCondition holds the condition number for interpolation of each interpolation point.
6.4.25 ListOfCompositeGrid multigridLevel

multigridLevel is a list of CompositeGrids containing those MappedGrids which belong to the same multigrid level. multi-
gridLevel overloads GridCollection::multigridLevel (§5.4.8), whose GridCollections contain the same grids as the Com-
positeGrids of multigridLevel. This data may be updated as in the following example.

6.5 Public data used by the Grid Generator Ogen

Data used by class Ogen for optimization of overlap computation.

6.5.1 RealCompositeGridFunction inverseCondition

Dimensions of inverseCondition[k]: (doo: dio, do1: d11, do2: di2), Where d;; = grid[K].dimension(s, j).
inverseCondition holds the condition number for interpolation of each point, in case that point were to be interpolated from
the grid whose index is given by inverseGrid (§6.5.3).

6.5.2 RealCompositeGridFunction inverseCoordinates

Dimensions of inverseCoordinates[k]: (doo: d10, do1: d11,do2: di2, 0: nq), Where d;; = grid[k].dimension(¢, j) and n, =
numberOfDimensions() — 1.

inverseCoordinates holds the coordinates for interpolation of each point, in case that point were to be interpolated from the
grid whose index is given by inverseGrid (§6.5.3).

6.5.3 IntegerCompositeGridFunction inverseGrid

Dimensions of inverseGrid[k]: (doo: d10, do1: d11, do2: d12), Where d;; = grid[k].dimension(s, j).

inverseGrid holds, for each point, the index of a grid for which interpolation coordinates have been computed, in case that
point were to be interpolated from that grid. The index —1 is used to indicate the case where interpolation coordinates have not
been or cannot be computed.

6.6 Public data used only by derived classes

It is recommended that these variables be used only by derived classes.

6.6.1 CompositeGridDatax rcData

rcData is a pointer to the reference-counted data. It is recommended that this variable be used only by derived classes. See also
the member functions operator—>() (§6.2.6) and operatorx() (§6.2.7), which are provided for access to rcData.

6 CLASSCOMPOSITEGRID 52

6.6.2 Logical isCounted

isCounted is a flag that indicates whether the data pointed to by rcData (§6.6.1) is known to be reference-counted. It is
recommended that this variable be used only by derived classes.

6.7 Public constants

6.7.1 THEinterpolationCoordinates

THEinterpolationCoordinates indicates interpolationCoordinates (§6.4.18), the coordinates of the inteprolation points in
the parameter space of the grids from which they interpolate. See also update(what,how) (§6.1.12) and destroy(what)
(§6.1.14).

6.7.2 THEinterpoleeGrid

THEinterpoleeGrid indicates interpoleeGrid (§6.4.19), the indices of the grids from which the inteprolation points interpo-
late. See also update(what,how) (§6.1.12) and destroy(what) (§6.1.14).

6.7.3 THEinterpoleeLocation

THEinterpoleeLocation indicates interpoleeLocation (§6.4.22), the indices of the lower-left corners of the interpolation sten-
cils in the grids from which the inteprolation points interpolate. See also update(what,how) (§6.1.12) and destroy(what)
(§6.1.14).

6.7.4 THEinterpolationPoint

THEinterpolationPoint indicates interpolationPoint (§6.4.23), the indices of the interpolation points. See also up-
date(what,how) (§6.1.12) and destroy(what) (§6.1.14).

6.7.5 THEinterpolationCondition

THEinterpolationCondition indicates interpolationCondition (§6.4.24), the condition numbers for interpolation of the inter-
polation points. See also update(what,how) (§6.1.12) and destroy(what) (§6.1.14).

6.7.6 THEinverseMap

THEinverseMap indicates inverseCondition (§6.5.1), inverseCoordinates (§6.5.2) and inverseGrid (§6.5.3). See also up-
date(what,how) (§6.1.12) and destroy(what) (§6.1.14).

6.7.7 THEusualSuspects

THEusualSuspects = GridCollection:: THEusualSuspects (§5.6.21) | THEinterpolationCoordinates (§6.7.1) | THEinter-
poleeGrid (§6.7.2) | THEinterpoleeLocation (§6.7.3) | THEinterpolationPoint (§6.7.4)
See also update(what,how) (§6.1.12) and destroy(what) (§6.1.14).

6.7.8 EVERYTHING

EVERYTHING = GridCollection::EVERYTHING (§5.6.22) | THEinterpolationCoordinates (§6.7.1) | THEinterpolee-
Grid (§6.7.2) | THEinterpoleeLocation (§6.7.3) | THEinterpolationPoint (§6.7.4) | THEinterpolationCondition (§6.7.5) |
THEinverseMap (56.7.6)

See also update(what,how) (§6.1.12) and destroy(what) (§6.1.14).

6.7.9 COMPUTEtheUsual

COMPUTEtheUsual = GridCollection:: COMPUTEtheUsual (§5.6.26)
See also update(what,how) (§6.1.12) and destroy(what) (§6.1.14).

A CLASS REFERENCECOUNTING 53

6.7.10 ISgivenBylnterpoleePoint

ISgivenBylInterpoleePoint is used with interpoleeGrid[k] (§6.4.19) to indicate interpolation points whose interpolation sten-
cils contain points from more than one interpolee grid.

A Class ReferenceCounting

A.1 Public member functions
A.1.1 ReferenceCounting()

Default constructor.

A.1.2 ReferenceCounting(const ReferenceCounting& x, const CopyType ct = DEEP)

Copy constructor. This does a deep copy by default. In fact, for class ReferenceCounting, there is no data to be copied, so the
arguments x and ct are ignored.

A.1.3 virtual ~ReferenceCounting()

Destructor. This function checks that the actual number of references is zero, as it should be when the object is destroyed.

A.1.4 virtual ReferenceCounting& operator=(const ReferenceCounting& Xx)

Assignment operator. This is also called a deep copy.

A.1.5 virtual void reference(const ReferenceCounting& x)

Make a reference. This is also called a shallow copy. This ReferenceCounting shares the data of x. In fact, this virtual function
does nothing at all in the base class ReferenceCounting, but it should have the effect specified above when it is defined in any
envelope class that is derived from ReferenceCounting.

A.1.6 virtual void breakReference()

Break a reference. If this ReferenceCounting shares data with any other ReferenceCounting, then this function replaces it
with a new copy that does not share data. In fact, this virtual function does nothing at all in the base class ReferenceCounting,
but it should have the effect specified above when it is defined in any envelope class that is derived from ReferenceCounting.
A.1.7 virtual ReferenceCounting~ virtualConstructor(const CopyType ct = DEEP) const

Allocate and return a pointer to a new copy of this ReferenceCounting. Any class that is derived from ReferenceCounting
should also define this virtual function, so that this function will allocate a new copy of an object of the derived class.

A.1.8 Integer incrementReferenceCount()

Increment the reference count and return the resulting value.

A.1.9 Integer decrementReferenceCount()

Decrement the reference count and return the resulting value.

A.1.10 Logical uncountedReferencesMayExist()

This function determines whether uncounted references may exist. If so, it returns a non-zero value; otherwise it returns zero.
If it is determined that uncounted references may exist, then getReferenceCount() (§A.2.1) thereafter returns one more than
the actual number of references. This is done so that when all of the counted references are destroyed and the actual number of
references is decremented to zero, getReferenceCount() will still return the value one, to indicate that one or more uncounted
references to the object may still exist and that the object should still not be deleted.

B STREAM I/O

A.1.11 virtual void consistencyCheck() const

Check the consistency of this ReferenceCounting.

A.2 Public Member functionsfor accessto data
A.2.1 Integer getReferenceCount()

This function returns the reference count.

A.2.2 virtual aString getClassName() const

Get the class name of the most-derived class for this object.

A.2.3 Integer getGloballD() const

Get the unique global identifier for this ReferenceCounting.

B StreamI/O
B.1 Stream I/O Operators

B.1.1 ostream& operator<(ostream& s, const ReferenceCounting& Xx)

Stream output operator.

B.1.2 ostream& operator< (ostream& s, const GenericGrid& g)

Stream output operator.

B.1.3 ostream& operator< (ostream& s, const MappedGrid& g)

Stream output operator.

B.1.4 ostream& operator<(ostream& s, const GenericGridCollection& g)

Stream output operator.

B.1.5 ostream& operator<(ostream& s, const GridCollection& g)

Stream output operator.

B.1.6 ostream& operator< (ostream& s, const CompositeGrid& g)

Stream output operator.

54

| ndex
CompositeGrid, 44

Generic Grid, 10
GenericGridCollection, 30
GridCollection, 36

grids, 1

MappedGrid, 13

55

